Reg. No. :						

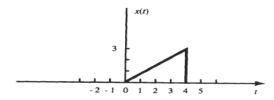
Question Paper Code: R4409

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Electronics and Communication Engineering

R21UEC409- SIGNALS AND LINEAR SYSTEMS


(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 \times 2 = 20 \text{ Marks})$$

1. Sketch the signal x(-t+2) and -x(t-5) CO2-App

2. Plot the following transformations of the signals given.

CO2-App

i)
$$y(n)=u(n)+u(n+2)$$

ii)
$$y(t)=u(t-2)-u(t-3)$$

3. State and prove the Parseval's theorem in Fourier series.

CO1-U

4. Find harmonics and TFS coefficients of the following signals. $x(t)=10 \cos^2(45 t-45^0)$

CO1-U

5. If $X(s) = \frac{2}{s-2} + \frac{1}{s-1}$, Plot the s-plane when the ROCs of the L.T is s > 1 and s

CO3-App

CO3-App

< 2

- 6. Determine the inverse Laplace transform of the given $X(s) = \frac{s}{s^2 + 5s + 6} Re(s) > -1$
- 7. State sampling Theorem.

CO1-U

8. Define DTFT pair. What is the relationship between DTFT and Z-Transform?

CO1-U

9. Find the Z-transform of $x(n) = na^n u(n)$.

CO4-App

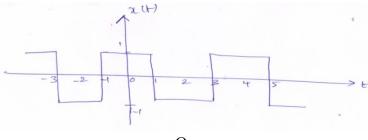
10. Find the unilateral z-transform of

CO4-App

$$x(n) = \cos(\omega_o n)$$

11. (a) Check whether the given signals are energy or power signal.

CO2-App


(16)

- i) $x(t) = A \cos \omega t$, -T < t < T
- ii) $x(n) = (1/3)^n u(n)$

Or

- (b) Check whether the following systems are static/dynamic, CO2-App (16)causal/non- causal, linear/non-linear, time-variant/time-invariant
 - i) y(n) = 4 x(n) ii) $y(t) = e^{2x(t)}$
- iii) $y[t] = \sin x(t)$

- iv) y(n) = 2x(2n)
- 12. (a) Obtain the trigonometric Fourier series representation of the given CO3 -App (16)function

Or

- (b) Obtain the Fourier Transform of the signal e^{-|t|} and plot its CO3 -App (16)magnitude and phase spectrum.
- i) Find the Laplace transform and ROC of the signal 13. (a)

CO2-App (16)

- $x(t) = e^{at} u(t) + e^{bt} u(t)$
- ii) Find the inverse Laplace transform of

$$X(s) = 1/((s+1)(s+2)$$

Or

- (b) i) Determine the initial value and final value of signal x(t) whose CO2-App (16)Laplace Transform is, $X(S) = \frac{2s+5}{s(s+3)}$
 - ii) Find the Laplace Transform of the following:
 - a) $t e^{-at} u(t)$ b) $cos(\omega_0 t) u(t)$
- 14. (a) State and prove sampling theorem for low pass band limited signal CO1 -U (16)and explain the process of reconstruction of the signal from its samples.

Or

- (b) State and prove the following properties of DTFT CO1 -U
 - a) Time shifting b) Linearity c) Time scaling d) Convolution
 - e) Differentiation

(16)

- 15. (a) Determine the z-transform and plot the ROC of the following CO4-App (16)signals.
 - $i) x(n) = a^n u(n)$
- ii) $x(n) = -b^n u(-n-1)$ Or
- (b) (i) Find the Z-Transform of the given signal

CO4-App (8)

- $x(n) = \|\sin \omega n\| u(n)$ and hence find ROC
- (ii) Find the Z-Transform of the given signal

CO4-App (8)

- $x(n) = (1/2)^n u(-n)$ and hence find ROC