\mathbf{C}

9.

Reg. No. :						

Question Paper Code: U9402

B.E. / B.Tech. DEGREE EXAMINATION, APRIL /MAY 2025

Professional Elective

Electronics and Communication Engineering

21UEC902- ROBOTICS AND APPLICATION

(Regulations 2021) **Duration:** Three hours Maximum: 100 Marks Answer ALL Questions PART A - $(5 \times 1 = 5 \text{ Marks})$ What is the primary function of sensors in a robot? CO1-U 1. (a) Data collection (b) Signal transmission (c) Movement (d) Orientation 2. Degrees of freedom in robotics describe: CO2-App (b) Programming difficulty (c) Weight handling (d) Speed (a) Movement capability Force balance is important for: CO1-U 3. (a) Static analysis (b) Dynamic movement (c) Signal processing (d) Orientation The term 'p-degree polynomial' refers to: CO4- App (a) Path generation (b) Sensor alignment (c) Velocity calculation (d) Torque balance Which command is used for delays in robot motion? CO1-U (a) Delay command (b) Stop command (c) Wait command (d) Pause command PART - B (5 x 3= 15 Marks) 6. What is the role of tactile sensors? CO1-U 7. What are the various types of joints? CO1-U 8 List the interior singularities. CO1-U

CO1-U

CO1-U

Write the Lagrangian-Euler formula for a dynamic model.

10. Mention the different methods of robot programming.

$PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Explain the brief history of robots, and how have they evolved CO1-U over time from early myths and conceptual designs to modern industrial and personal applications?

Or

- (b) Detail about common design and control issues faced in robotics, CO1-U particularly in terms of system integration, reliability, and safety?
- 12. (a) How can mathematically derive the relationship between two CO1-U rotated frames, and what role does the rotation matrix play in mapping coordinates from one frame to another in robotic systems?

Or

- (b) Derive the Mathematical representation of Robots CO1-U
- 13. (a) Inspect the significance of the Denavit-Hartenberg (D-H) CO4-Ana (16) convention in robotic kinematics?

Oı

- (b) Survey the Proportion integral Derivative control scheme improve CO4-Ana (16) accuracy and eliminate steady-state error in a robotic manipulator?
- 14. (a) A one degree of freedom manipulator with a rotary joint is to move CO2-App (16) from 113 degrees to 210 degrees in 7 seconds. Find the coefficient of the cubic polynomial to interpolate a smooth trajectory. Identify the position velocity and acceleration variation as a function of time.

Or

- (b) A six-axis robot's first joint moves from 350° to 700° within 6 CO2-App (16) seconds. Using a cubic polynomial trajectory, determine the joint angle at 1, 2, and 3 seconds.
- 15. (a) Summarize the lead-through programming methods used in CO1-U robotics. Explain the steps involved in teaching a robot using these methods with relevant examples.

Or

(b) Extend robot program as a "path in space"? Explain how this CO1-U concept is implemented in robot programming and its significance in real-world applications.

(16)