_						
Reg. No.:						

Question Paper Code:U4303

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2025

Professional Elective

Electronics and Communication Engineering

21ECV303- NANO ELECTRONICS

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

	PAR1 A - $(10 \times 2 = 20 \text{ Marks})$	
1.	Lithium crystallizes in BCC structure. Calculate the lattice constant, given that the atomic weight and density for Lithium are 6.94 gram and 530 Kg/m3 respectively.	CO2-App
2.	An element A (atomic weight $=100$ amu) having bcc structure has unit cell edge length of 400 pm. Calculate the density of A.	CO2-App
3.	Distinguish the top down and bottom up approach for fabrication of	CO1- U
	Nanostructures.	
4.	The reflecting plane of lithium fluoride analyzing crystal has an interplanar	CO2-App
	Distance of $4A^0$.calculate the wavelength of 2^{nd} order differential line which has a glance angle of 30.	
5.	Compare the Spectroscopic techniques UV-Visible and Infra-red Spectroscopy.	CO1- U
6.	Compare and contrast the features of IR and RAMAN Spectroscopy	CO1- U
7.	Mention the procedure to put the other atoms between the plates of Graphitic	CO1- U
	Sheets.	
8.	What do you mean by Carbon Clusters? How many carbon atoms are there in a	CO1- U
	Bucky ball?	
9.	In Spintronics, how can this control of the spin for long distances be	CO1- U
	Conceivable?	
10.	A nano-beam in a NEMS device has a surface area $A=1\mu$ m2, and the surface energy density is $\gamma=0.5$ J/m ² . Calculate the total surface energy.	CO1- U

$PART - B (5 \times 16 = 80 \text{ Marks})$

11. (a) When a semiconductor material can be treated as a bulk, quantum CO1- U well, quantum wire, quantum dot or nano - particle? Illustrate in terms of density of states, electronic properties, optical properties and also Energy level structures.

Or

- (b) Classify the materials based on its energy band structures. Also CO1- U (16) Explain in detail about Excitons and Mobility.
- 12. (a) Fabricate a Nanofilm by Applying the concept of photolithography CO3- App (16) techniques in the Nano materials study.

 O_1

- (b) An atom has two nondegenerate electronic quantum states in a thin CO3- App (16) film nanomaterial with energy at E 1 =1.1 eV and E 2 = -0.96 eV from the vacuum level. Analyze, the average number of electron count in each atom at the E1 &E2 at room temperature.
- 13. (a) Explain how Transmission Electron microscopy is used in CO1-U (16) characterization of nano materials.

Or

- (b) Determine how Field ion microscopy is used in characterization of CO1- U nano materials. State all your assumptions clearly.
- 14. (a) Classify the vibrational and mechanical properties of the CNT by CO6- Ana (16) applying scanning electron microscopy. Compare their performances.

Or

- (b) Compare the properties of Carbon Clusters ,Alkali Doped C60 CO6- Ana (16) And Superconductivity in C60. Analyze the properties and identify the appropriate Application Areas. Justify your Answer.
- 15. (a) A rectangular silicon **MEMS** cantilever beam has CO2- App (16)length L=200 μ m width w=50 μ m, and thickness t=10 μ m. The is $\rho=2330 \text{ kg/m}^3$ and density of silicon Young's fundamental modulus E=170 GPa. Calculate the resonant frequency.

Or

(b) A parallel-plate MEMS capacitor has an initial gap $d0=3\mu\text{m}$, plate CO2- App area $A=200\mu\text{m}\times200\mu\text{m}$, and a permittivity $\epsilon0=8.854\times10^{-12}\text{F/m}$. If the gap is reduced to $d=1.5\mu\text{m}$ due to an applied voltage, calculate the change in capacitance.