Question Paper Code: U6401

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Professional Elective

Electronics and Communication Engineering

21ECV301- ADVANCED WIRELESS SENSOR NETWORKS

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Briefly describe how WSNs can be used in disaster management. CO1-U
- 2. Identify computing techniques that enhance decision-making in smart sensor CO1-U systems.
- 3. What are the key properties of localization and positioning procedures in WSNs? CO1-U
- 4. Give the differences in locating sensor nodes in single-layer and multi-layer CO1-U networks?
- 5. State the principle behind location-based routing protocols in WSNs? CO1-U
- 6. How do data-centric routing protocols differ from other routing protocols in CO1-U WSNs?
- 7. How does dynamic clustering enhance the performance of large-scale IoT- CO1-U enabled sensor networks?
- 8. How do machine learning-based clustering techniques optimize network CO1-U partitioning in advanced WSNs?
- 9. How do deep learning algorithms assist in the predictive maintenance and CO1-U monitoring of smart sensor networks?
- 10. What is the significance of CoAP in WSN-IoT integration?

 $PART - B (5 \times 16 = 80 \text{ Marks})$

11. (a) Discuss the unique constraints and challenges faced by wireless CO1-U (16) sensor networks. How do these factors impact the design and implementation of WSNs?

(b)	Explain the architecture of a typical sensor node in a WSN. How do these components interact to ensure efficient data sensing, processing, and communication?	CO1-U	(16)
(a)	How does it support scalability and improve overall network performance?	CO6-Ana	(16)
(b)	Explore the challenges of localization in multi-hop networks.	CO6-Ana	(16)
(a)	Analyze the energy-efficient routing techniques in WSNs. Compare the performance of different energy-efficient protocols with real- world case studies.	CO3-Ana	(16)
	Or		
(b)	Examine the classification of routing protocols in WSNs, focusing on hierarchical, location-based, and data-centric protocols. How do these classifications affect energy consumption and data delivery efficiency?	CO3-Ana	(16)
(a)	WSNs. Compare the energy consumption of traditional and modern clustering methods.	CO1-U	(16)
	Or		
(b)	Explain the different topology control techniques used in WSNs. Compare adaptive and real-time topology control algorithms and their impact on energy consumption.	CO1-U	(16)
(a)	How can machine learning and artificial intelligence be applied to Wireless Sensor Network programming to enhance real-time data processing and decision-making? Demonstrate their role in improving network performance, adaptability and resource optimization through practical implementation strategies Or	CO2-App	(16)
(b)	In what ways can event-driven programming models be implemented to address the challenges of real-time data processing in Wireless Sensor Networks. Apply these models to enhance system responsiveness, reduce energy consumption, and improve data handling in dynamic network environments	CO2-App	(16)
	(a) (b) (a) (b)	these components interact to ensure efficient data sensing, processing, and communication? (a) Analyze the use of cloud-assisted localization in large-scale WSNs. How does it support scalability and improve overall network performance? Or (b) Explore the challenges of localization in multi-hop networks. (a) Analyze the energy-efficient routing techniques in WSNs. Compare the performance of different energy-efficient protocols with real-world case studies. Or (b) Examine the classification of routing protocols in WSNs, focusing on hierarchical, location-based, and data-centric protocols. How do these classifications affect energy consumption and data delivery efficiency? (a) Outline the importance of energy-efficient clustering techniques in WSNs. Compare the energy consumption of traditional and modern clustering methods. Or (b) Explain the different topology control techniques used in WSNs. Compare adaptive and real-time topology control algorithms and their impact on energy consumption. (a) How can machine learning and artificial intelligence be applied to Wireless Sensor Network programming to enhance real-time data processing and decision-making? Demonstrate their role in improving network performance, adaptability and resource optimization through practical implementation strategies Or (b) In what ways can event-driven programming models be implemented to address the challenges of real-time data processing in Wireless Sensor Networks. Apply these models to enhance system responsiveness, reduce energy consumption, and improve	these components interact to ensure efficient data sensing, processing, and communication? (a) Analyze the use of cloud-assisted localization in large-scale WSNs. How does it support scalability and improve overall network performance? Or (b) Explore the challenges of localization in multi-hop networks. CO6-Ana the performance of different energy-efficient protocols with real-world case studies. Or (b) Examine the classification of routing protocols in WSNs, focusing on hierarchical, location-based, and data-centric protocols. How do these classifications affect energy consumption and data delivery efficiency? (a) Outline the importance of energy-efficient clustering techniques in WSNs. Compare the energy consumption of traditional and modern clustering methods. Or (b) Explain the different topology control techniques used in WSNs. CO1-U Compare adaptive and real-time topology control algorithms and their impact on energy consumption. (a) How can machine learning and artificial intelligence be applied to Wireless Sensor Network programming to enhance real-time data processing and decision-making? Demonstrate their role in improving network performance, adaptability and resource optimization through practical implementation strategies Or (b) In what ways can event-driven programming models be implemented to address the challenges of real-time data processing in Wireless Sensor Networks. Apply these models to enhance system responsiveness, reduce energy consumption, and improve