\mathbf{C}

Reg.	Nο	•
1102.	110.	•

Question Paper Code: R2205

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Computer Science and Engineering

R21UCS205- DIGITAL ELECTRONICS

		(Common to CSE(SC) Engineering branche	s)		
		(Regulation	ons R2021)			
Dur	ation: Three hours			Maximuı	m: 100 Marks	
		Answer AI	LL Questions			
		PART A - (5	x 1 = 5Marks)			
1.	Binary addition (0+1 is equal to	_		CO2-App	
	(a) 1	(b) 0	(c) 2	(d) 3		
2.	Infer the Boolean	expression of borrow in	half-subtractor		CO1-U	
	(a) AB'	(b) A'B	(c) AB	(d) A	B'	
3.	In the case of a the flip-flop togg	J-K flip-flop with active les	inputs, the ou	tput of	CO1-U	
	(a) High	(b) Low	(c) Half	(d)	(d) Partials	
4.	In Asynchronous	circuit, the changes occu	r with the change of_		CO1-U	
	(a) input	(b) output	(c) clock pulse	(d) time		
5.	A table specifyin	g the fuse map of a PLA i	s called		CO1-U	
	(a) fuse table	(b) fuse map table	(c) programmin	g table (d) PLA table	
		PART - B (5	x 3= 15 Marks)			
6.	Find the 2's comp	plement of following bina	ry value 10111011		CO2-App	
7.	Define combinati	ional logic.			CO1-U	
8.	What are the diff	erent types of flip-flop?			CO1-U	
9.	State the problem	ns in Asynchronous Sequ	ential Circuits		CO1-U	
10.	What is program	mable logic array? How it	t differs from ROM?		CO1-U	

11.	(a)	Solve the following: (i) $(1001010.1101001)_2$ to base ₁₀ (ii) $(15.32)_{10}$ to base ₂ (iii) $(1011DA)_{16}$ to base ₁₀	CO2-App	(16)
		Or		
	(b)	Plot the following Boolean function in Karnaugh map and simplify it in SOP $F(W,X,Y,Z) = \sum (7,9,10,11,12,13,14,15)$	CO2-App	(16)
12.	(a)	Design Full Adder and derive expression for Sum and Carry in Cin(X,y) with circuit diagram. Or	CO2-App	(16)
	(b)	Design a logic circuit that accepts a 4-bit Gray code and converts it to 4bit Binary code with input (G3,G2,G1,G0) and output (B3,B2,B1,B0)?	CO2-App	(16)
13.	(a)	Derive the operation of D and T flip-flops and answer the following (i) Draw the logic diagram of the circuit. (ii) Derive the Truth table. (iii) Derive Excitation Table (iv) Derive State Diagram	CO1-U	(16)
		Or		
	(b)	Explain the following Shift Registers in detail (a) SIPO (b) PISO (c) PIPO	CO1-U	(16)
14.	(a)	Design an asynchronous sequential circuit with two inputs X1,X2 and one output Initially both inputs are equal to 0.when X1 or X2 becomes 1 output becomes 1.when second input also becomes 1 output changes to 0.the output stays at 0 until the circuit goes back to initial state.	CO2-App	(16)
	(b)	Or Design of Hazard free switching circuits for static, dynamic and essential hazards	CO2-App	(16)
15.	(a)	Explain in detail about the classification of memories with neat block diagram?	CO1-U	(16)
		Or		
	(b)	Explain the Characteristic function of RTL and ECL circuits in Logic families.	CO1-U	(16)