Question Paper Code: U6201

B.E. / B.Tech. DEGREE EXAMINATION, APRIL/MAY 2025

			•							
		Sixth	Semester							
Computer Science And Engineering										
21UCS601- PRINCIPLES OF COMPILER DESIGN										
(Regulations 2021)										
Dur	ation: Three hours				Maximum: 100) Marks				
		Answer AI	LL Questions							
	PA	ART A - (5	x 1 = 5Marks))						
1.	If the lexical analyzer finds a lexeme with the same name as that of a reserved word. What Analyzer will do?									
	(a) overwrites the word(c) Overwrites the error		(b) overw	(b) overwrites the functionality						
			(d) None	(d) None of the above						
2.	The basic actions in the parsing process of any botto			parser ar	re	CO1-U				
	(a) Shift, Produce, accept, reject(c) Rotate, produce, accept, reject		(b) Shift,	(b) Shift, Produce, reject, accept						
			(d) Shift,	(d) Shift, reduce, accept, reject						
3.	In programming, Boolean expressions are used CO1									
	i. To Compute the logical values									
	ii. As conditional expressions in flow control statements									
	(a) i only (b) ii only	У	(c) i and ii		(d) none.					
4.	In activation record, Which of the following Stores the address of activation record of the caller procedure?									
	(a) Access Link (b) Actual 1	Parameters	(c) Cont	rol Link	(d) Temporarie	es				
5.	The graph that shows basic bloc	ks and the	ir successor rel	ationship	is called	CO1-U				
	(a) DAG (b) Flow gr	aph ((c) control grap	o h	(d) Hamiltonio	n graph				

$PART - B (5 \times 3 = 15 \text{ Marks})$

6.	Def	ine tokens, patterns and lexemes with suitable example.	CO1-U						
7.	Dra	Draw the syntax tree of the statement a^* - $(b+c)$		CO 2- App					
8.	What are the intermediate languages.			CO1-U					
9.	Dist	inguish between static vs dynamic storage allocation.	CO1-U						
10.	Wha	at is peephole? what is the need of peephole optimization?	CO1-U						
		PART – C (5 x 16= 80 Marks)							
11.	(a)	Explain the various phases of a compiler in detail. Also write down the output for the following expression: position: =initial + rate * 60.	CO2-App	(16)					
	Or								
	(b)	Derive DFA for the regular expression a*b (a+b)*	CO2-App	(16)					
12.	(a)	Design non-recursive predictive parser for the following grammar and parse the string id+id*id. $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$	CO2-App	(16)					
	$F \rightarrow (E) id$								
	(b)	Or Find the SLR parsing table for the given grammar $E \rightarrow E+E E*E (E) $ id and parse (a+b*c)	CO2-App	(16)					
13.	(a)	Explain in detail the various representation of intermediate code. Or	CO1-U	(16)					
	(b)	Explain the translation of Boolean expressions in detail.	CO1-U	(16)					
14.	(a)	Illustrate in detail about the code generation algorithm with an example. Or	CO2-App	(16)					
	(b)	Develop a quicksort algorithm for reads nine integers into an array and sorts them by using the concepts of activation tree.	CO2-App	(16)					
15.	(a)	Explain the principal sources of optimization in detail. Or	CO1-U	(16)					
	(b)	Discuss the three different storage allocation techniques.	CO1-U	(16)					