Reg. No.:						

Question Paper Code: R2F05

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Computer Science and Design

R21UCD205- DIGITAL AND COMPUTER ORGANIZATION

	(Regulations R2021)					
Duration: Three hours Maxim				Marks		
	Answer ALL Questions					
	PART A - $(10 \times 2 = 20 \text{ Marks})$					
1.	Convert $(1101.101)_2$ to decimal equivalent.		CO2	-App		
2.	Minimize the expression using the k-map method:					
	$F(A,B,C) = \sum m(1,2,3,5,7).$					
3.	3. Implement 4X1 MUX using 2X1 MUX.					
4.	4. Explain SR flip-flop.					
5.	What are the registers generally contained in the processor?		CO1	- U		
6.	$A = 5$, $A = 3+A$ and $B = 4 \times A$ what hazard does the above two in create when executed concurrently	structions	CO2	-App		
7.	What are the classifications of data hazards?		CO1	- U		
8. Define Structural hazards.						
9.	9. Define the term RELIABILITY.					
10.	How the interrupt is handled during exception?					
	PART – B (5 x 16= 80 Marks)					
11.	(a) Simplify the Boolean expression using K-map $F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$. Or	CO2-A	ърр	(16)		
	(b) Consider the function	CO2-A	pp	(16)		

 $f(A, B, C, D) = \sum m(0,1,2,3,5,7,8,10,12,13,15)$ using Quine

Mccluskey Method.

12.	(a)	Explain the working of full adder with its logic symbol, logic circuit, truth table and logical expression. Or	CO1- U	(16)
	(b)	Briefly explain about Multiplexer and Demultiplexer	CO1- U	(16)
13.	(a)	What do you mean by addressing modes? Explain various addressing modes with the help of examples. Or	CO1- U	(16)
	(b)	Explain in detail the various components of computer system with neat diagram.	CO1- U	(16)
14.	(a)	Explain the various pipelining concepts in computer architecture. Or	CO1- U	(16)
	(b)	Explain restoring and non-restoring division technique.	CO1- U	(16)
15.	(a)	Explain the need for cache memory and discuss the different types of mapping functions with necessary block diagram. Or	CO1- U	(16)
	(b)	What is an interrupt? Explain the different types of interrupts and the different ways of handling interrupts.	CO1- U	(16)