•	
A	

5. Var(2X + 3) =_____

(a) 4

a) 4Var(X) + 9Var(Y) b) 4Var(X)

6x+y-31=0 then the arithmetic mean of x is

(b) 7

If the regression lines of two variables x and y are 3x+2y-26=0 and

_		
Reg.	No.	:

CO3 - App

CO3-App

d) 0

(d) 3

Question Paper Code: R4M26

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Artificial Intelligence and Data Science

R21UMA426 – PROBABILITY AND STATISTICAL TECHNIQUES

(Common to CSD Engineering branches)

(Regulations R2021) Duration: Three hours Maximum: 100 Marks **Answer ALL Questions** PART A - $(10 \times 1 = 10 \text{ Marks})$ The rthmoment about origin is CO6- U (d) None of the above (b) $\mu(X^2)$ (a) $\mu(X)$ (c) $\mu(X^r)$ A Continuous r.v has a p.d.f CO1- App $f(x) = 3x^2$, $0 \le x \le 1$, If P(X > b) = 0.05, then value of b is (a) 0.9308 (b) 0.9803 (c) 0.9830 (d) 0.9038 For Geometric Distribution CO6 -U (b) $E(X) > \sigma^2$ (c) $E(X) < \sigma^2$ (a) $E(X) = \sigma^2$ (d) $E(X) \ge \sigma^2$ If $M_x(t) = (0.7 + 0.3e^t)^{10}$ then value of mean is CO6-U (a) 3 (b) 0.21(c) 70 (d) 2.1

c) 9Var (Y)

(c) 4,7

7.	If T is an unbiased est	imator for θ , then T	² is a Estim	nator for θ^2 .	CO6 – U			
	(a) unbiased	(b) biased	(c) Both (a) & (b)	(d) None of the	above			
8.	Bias of an estimator c	an be			CO 6 – U			
	(a) Negative	(b) Positive	(c) Zero	(d) Both (a)	& (b)			
9.	The degrees of freedo	m in t-tests is			CO6- U			
	(a) n-1	(b) n-2	(c) n-3	(d) n-4				
10.	Chi-square test is very	as of an estimator can be						
	-	a) unbiased (b) biased (c) Both (a) & (b) (c) bias of an estimator can be						
	1			(d) goodne				
11.	In the probability den	`	,	CC	01 -App			
12.	If Moment generating	function $M_x(t) = \frac{1}{2}$	$\frac{2}{-t}$, find the variance variance variance	alue	02 -App			
13.	· ·		respectively $4X + 5Y =$	=33 and 20X CC	03 -App			
14.	Explain: Fisher – Neymann Criterion.							
15.	State the applications	CC	06- U					
		PART – C	C (5 x 16= 80 Marks)					
16.	$ \begin{array}{c cc} x & 0 \\ \hline P(X & 2a & 3 \\ \hline Compute & 1) p(X & 3 \\ \end{array} $	1 2 3 da 5a 7a	4 5 6 9a 12a 15a	CO1-A _I tribution	op (8)			
		orobability mass fi	unction of (XV) is a	iven by CO1-A	op (8)			
	` '	•	, , , -	iven by corri	op (0)			
			_					
	(b) (i) The joint pdf			CO1-A _J	op (8)			
	$f(x,y) = x^2 + \frac{xy}{3}$	$0 \le x \le 1 \ , \ 0 \le y \le 2$						
	•	ditional density fun X and Y independe						

(ii) If the joint distribution function of the RV (X,Y) is given by CO1-App (8) $F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}), & x>0, y>0\\ 0 & otherwise \end{cases}$ Compute the (i) marginal

density functions of X and Y (ii) Are X and Y independent?

- 17. (a) (i) Compute the moment generating function of Poisson distribution CO3-App (8) and hence Compute it's mean and variance.
 - (ii) Out of 800 families with 4 children each, how many families CO3-App (8) would be expected to have (1) 2 boys and 2 girls (2) at least 1 boy
 - (3) at most 2 girls. (4) Children of both gender

Or

- (b) (i) State and prove Memory less property of Exponential CO3-App (8) distribution
 - (ii) A random variable X has a uniform distribution over (-4,4) CO3-App (8) compute
 - (a) $P(X \le 2)$ (b) $P(|X| \le 3)$ and (C) $P(X \ge 1)$
- 18. (a) (i) Obtain the Correlation coefficient for the following data CO3-App

X	12	15	17	18	23	16	25	27
Y	110	120	124	130	136	122	140	143

(ii) Obtain the rank Correlation coefficient for the following data:

(ii) Solution the faith confolution coefficient for the following data.											
X	12	15	17	18	12	16	15	27			
Y	14	10	14	13	16	10	14	15			

Or

(b) i). If $\sigma_1 = 2$, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.4$, $r_{23} = 0.3$, $r_{31} = 0.5$ Compute CO3-App (8) (i) $r_{23.1}$ (ii) $R_{1.23}$ (iii) $b_{13.2}$ (iv) $b_{12.3}$

(ii) Joint pdf of X and Y is
$$f(x, y) = \begin{cases} 2 - x - y, 0 \le x \le 1, 0 \le y \le 1 \\ 0 & elsewhere \end{cases}$$
. CO3-App (8)

Compute Regression Equations

19. (a) (i) If x_1 , x_2 , x_3 ··· x_n is a random sample from a normal population CO4- App (8)

N(μ , 1). Show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.

(8)

(8)

CO₃-App

(ii) The mean weekly sales of soap bars in departmental stores were CO4-App (8) 146.3 bars per store. After an advertising campaign the mean weekly sales in 400 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

Or

- (b) In random sampling from normal population $N(\mu, \sigma^2)$, find the CO4-App (16) maximum likelihood estimators for 1) μ when σ^2 is known 2) σ^2 when μ is known and 3)The simultaneous estimation of μ and σ^2 .
- 20. (a) (i) A sample of analysis of examination results of 500 students was CO5- Ana (8) made. It was found that 220 students have failed, 170 students have secured a third, 90 has secured a second class and rest a first class 20, these figures support general belief that the above categories are in the ratio 4:3:2:1 respectively.
 - (ii) A certain injection administered to each of 12 patients resulted CO5- Ana in the following increases of blood pressure 8,8,7,5,4,1,0,0,-1,-1 can it be concluded that the injection will be in general accompanied by an increase in BP? Using t test.

Or

- (b) (i) In one sample of 10 observations, the sum of the squares of the CO5- Ana deviations of the sample values from the sample mean was 120 and in another sample of 12 observations it was 314. Test whether this difference is significant at 5% level of significance
 - (ii) A group of 10 rats fed on diet A and another group of 8 rats fed CO5- Ana (8) on diet B, recorded the following increase in weight.

Diet	5	6	8	1	12	4	3	9	6	10
A										
Diet B	2	3	6	8	10	1	2	8		

Find the variances are significantly different.

(8)