Δ	

Reg. No.:

Question Paper Code: U4M26

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2025

Fourth Semester

Computer Science and Design

21UMA426- PROBABILITY AND STATISTICAL TECHNIQUES

(Common to Artificial Intelligence and Data Science Engineering)

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

PART A - $(10 \times 1 = 10 \text{ Marks})$

1. The mean of the random variable is denoted by CO6- U

(a) E(X)

(b) $E(X^2)$

(c) 0

(d) 1

If X is the discrete random variable having the probability mass function, then K value is.

CO1- App

X	-1	0	1		
P(X)	K	2K	3K		
(b) -1/6		(c) -1		

(a)1/6Which of the following distribution has equal mean and Standard deviation?

CO6- U

(a) Geometric

(b)Poisson

(c) Normal

(d) Binomial

F If $M_x(t) = (0.3 + 0.7e^t)^{10}$ then value of mean is

CO6- U

(a)30

(b)0.21

(c) 70

(d) 21

(d) 1

If X and Y are independent, then Cov(X, Y) =

CO6- U

(a) 1

(b) 0

(c) 2

(d) 3

Var(2X + 3) =_____

CO3-App

(a) 4Var(X) + 9Var(Y) (b) 4Var(X)

(c) 9Var (Y)

(d) 0

Estimate is the observed value of an:

CO6-U

(a) Unbiased estimator (b) Estimator

(c)Estimation

(d) Interval estimation

The distance between an estimate and estimated parameter is called 8. CO6- U

- (a) Sampling error
- (b) Error of estimation
- (c) Bias
- (d) standard error

In Chi-square the sample observations should be

CO6- U

- (a) dependent
- (b) independent
- (c) equal
- (d) none of these

10. The mean for t-test distribution is

CO6- U

(a)
$$t = \frac{\overline{x}_1 - \mu}{s / \sqrt{n-1}}$$
 (b) $t = \frac{\overline{x}_1 + \mu}{s / \sqrt{n-1}}$

(b)
$$t = \frac{\overline{x_1} + \mu}{s / \sqrt{n-1}}$$

(c)
$$t = 0$$

(d) None of the above

$$PART - B$$
 (5 x 2= 10Marks)

11. If the joint p.d.f of (X,Y) is given by $f(x,y) = 2, 0 \le x \le y \le 1$ Compute f(x)

CO1-App

If Moment generating function $M_x(t) = \frac{5}{5-t}$, find the variance value

CO2-App

13. If Correlation coefficient $\gamma = 0.9$, $\sigma_x = 5$, $\sigma_y = 2$, find the covariance value.

CO3-App

14. If T is an unbiased estimator for θ , show that T² is a biased estimator for θ ².

CO6-U

15. Define: Type I Error & Type II Error.

CO6- U

16. (a) (i) The joint probability mass function of (X,Y) is given by CO1-App (8)P(x, y) = k(4x + 3y) x = 1, 3, 5 y = 1, 2, 3 Compute marginal

distribution function, and conditional distribution (ii) The cumulative distribution function of a random variable X is CO1-App (8)

mean and variance

Or

 $F(x) = 1 - (1 + x)e^{-x}, x > 0$. Find the probability density function of X,

(i) The joint pdf (b)

CO1-App (8)

$$f(x,y) = \begin{cases} \frac{8xy}{9}, & 0 \le x \le y \le 2\\ 0 & otherwise \end{cases}$$

Compute $(i) f_x(x)$ $(ii) f_y(y)$ (iii). conditional density function

(ii) A Random Variable X has the following probability CO1-App (8)distribution

X	0	1	2	3	4	6	7
P(X	a	3a	5a	7a	9a	12a	15a

Compute Mean and Variance

- 17. (a) (i) Compute the moment generating function of Poisson CO2-App (8) distribution and hence Compute it's mean and variance.
 - (ii) Four coins are tossed simultaneously. What is the probability of CO2-App (8) getting (i) exactly 2 heads (ii) atleast 2 heads (iii) atmost 2 heads

Or

- (b) (i) Compute the moment generating function of Geometric CO2-App (8) distribution and hence Compute it's mean and variance
 - (ii) The mileage which car owners get with a certain kind of radial CO2- App tire is a random variable having an exponential distribution with mean 80,000 km. Derive the probabilities that one of these tires will last (i) at least 30,000 km and (ii) at most 40,000 km
- 18. (a) (i) Obtain the Correlation coefficient for the following data

(-)										
					23					
Y	11 0	12 0	124	130	136	122	140	143		

(ii) Joint pdf of X and Y is

CO3-App (8)

CO3- App

CO3-App

(8)

(8)

(8)

(8)

(8)

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2\\ 0 & elsewhere \end{cases}.$$

Compute Regression Equations

Or

(b) (i) Obtain the rank Correlation coefficient for the following data:

(1) Column the family conformation declination for the femily makes.										
X	10	15	12	12	12	15	14	16		
Y	30	42	30	42	42	44	45	42		

(ii) If $\sigma_1 = 5$, $\sigma_2 = \sigma_3 = 4$, $r_{12} = 0.61$, $r_{23} = 0.32$, $r_{31} = 0.45$ Compute CO3-App

 $(i)r_{12.3}$ $(ii) R_{2.31}$ $(iii) b_{12.3}$ $(iv) b_{12.3}$

19. (a) (i) If $X_1, X_2, X_3, ... X_n$ are random observations on a Bernoulli CO4-App variate X taking the value 1 with probability p and the value 0 with probability (1 - p), show that: $\sum_{n=1}^{\infty} \left(1 - \sum_{n=1}^{\infty} x_n\right)$ is a consistent

estimator of p (1 - p).

(ii) An ambulance service claims that it takes on the average 8.9 CO4-App minutes to reach its destination in emergency calls. To check on this claim, the agency which licenses ambulance services has them timed on 50 emergency calls, getting a mean of 9.3 minutes with a standard deviation of 1.6 minutes. What can they conclude at the level of significance?

3

Or

- (b) In random sampling from normal population $N(\mu, \sigma^2)$, find the CO4-App (16) maximum likelihood estimators for
 - (i) μ when σ^2 is known
 - (ii) σ^2 when μ is known and
 - (iii) The simultaneous estimation of μ and σ^2 .
- 20. (a) (i) A certain injection administered to each of 12 patients resulted in CO5-App the following increases of blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4 can it be classified that the injection will be, in general, accompanied by an increase in BP?
 - (ii) The following table gives the number of aircraft accidents that CO5-App occurred during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days	Mo	Tue	Wed	Thu	Fri	Sat
	n					
No. of	42	25	28	33	34	37
accidents						

Or

(b) (i) Two independent samples of sizes 9 and 7 from a normal CO5-App population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15	-	-

Investigate the estimates of the population variance differ significantly at 5% level?

(ii) In one sample of 10 observations, the sum of the squares of the deviations of the sample values from the sample mean was 120 and in another sample of 12 observations it was 314. Ensure that the test whether this difference is significant at 5% level of significance

(8)

(8)