A
Δ
Γ

Question Paper Code: R2M09

	B.E./B	Tech. DEGREE EXA	MINATION, APRIL / MAY 20	25
		Secon	d Semester	
		Computer Science	And Business Systems	
		R21UMA209- ST.	ATISTICAL METHODS	
		(Regula	tions R2021)	
Dur	ation: Three hours		Maxim	um: 100 Marks
		Answer A	ALL Questions	
		PART A - (1	$0 \times 1 = 10 \text{ Marks}$	
1.	In one-way ANOV freedom is	VA, with the usual nota	tion, the error degree of	CO6- U
	(a) $n-c$	(b) $c - 1$	(c) c - n	(d) $n - 1$
2.	In one-way ANOV the value of F is	•	SSE = 1656 , k = 4, n = 20 then	CO1- App
	(a) 7.3	(b) 8.3	(c) 7.8	(d) 8.7
3.	Estimate is the obs	served value of an:		CO6- U
	(a) Unbiased estim	nator	(b) Estimator	
	(c) Estimation		(d) Interval estimation	
4.	Neymann Fisher F	Sactorization theorem is	s also known as.	CO6- U
	(a) Theorem of sur	fficient estimators	(b) Rao Black-well theorem	n
	(c) Estimator		(d) None of these	
5.	The standard error	of the proportion $p = 0$	0.5 and n = 15.	CO3-App
	(a) 0.234	(b) -0.234	(c) 0.129	(d) - 0.129
6.	Compare to param	netric methods, the non	parametric methods are	CO6- U
	(a) Less accurate		(b) Less efficient	
	(c) Computational	ly easier	(d) (b) and (c) but not (a)	

7. A time series consists of _____.

CO6-U

(a) Short – term variations

(b) Long – term variations

(c) Irregular variations

- (d) All of the above
- 8. If the demand is 100 during October 2016, 200 in November 2016, 300 in December 2016, 400 in January 2017. What is the 3-month simple moving average for February 2017?

CO4-App

- (a) 300
- (b) 350

- (c) 400
- (d) Need more information

9. R was created by?

CO6- U

- (a) Ross Ihaka
- (b) Robert Gentleman
- (c) Both A and B
- (d) Ross Gentleman

10. Data Frames are created using the?

CO6- U

(a) frame() function

(b) data. frame() function

(c) data() function

(d) frame.data() function

$$PART - B$$
 (5 x 2= 10 Marks)

11. What are the uses of analysis of variance?

CO₆ U

- 12. If T is an unbiased estimator for θ , show that T^2 is a biased estimator for θ^2 .
 - . CO2 App
- 13. Find the standard error of the proportion p = 0.6 and n = 20.

CO3 App

14. Define secular trend.

CO₆ U

15. Explain what is t-tests in R?

CO₅ App

16. (a) The following data represent the number of units production per day turned out by different workers using 4 different types of machines.

CO1- App (16)

Machine Type

	A	В	C	D
1	44	38	47	36
2	46	40	52	43
3	34	36	44	32
4	43	38	46	33
5	38	42	49	39

Workers

Test whether the five men differ with respect to mean productivity and test whether the mean productivity is the same for the four different machine types.

Or

(1)	1	.1 C 11		T	C 1 .
(h	i Analyse	the talla	12 2 mily	Latin s	quare of a design
(\mathbf{U})	7 111a1 y 50	the folio	wiiig 15 u	Laums	quare or a design

B 90	E 80	C 134	A 112	D 92
E 85	D 84	B 70	C 141	A82
C 110	A 90	D 87	B 84	E 69
A 81	C 125	E 85	D 76	B 72
D 82	B 60	A 94	E 85	C 88

- 17. (a) (i) A random sample of 10 cadets of a centre is selected and measures their weights (in kg) which are given below: 48, 50, 62, 75, 80, 60, 70, 56, 52, 78. Determine an unbiased estimate of the average weight of cadets of the centre.
 - (ii) Let $X_1, X_2, X_3, ..., X_n$ be a random sample from Bernoulli CO2- App (8) distribution:

$$f(x,\theta) = \begin{cases} \theta^{x} (1-\theta)^{1-x}, & x = 0,1\\ 0 & otherwise \end{cases}.$$

Show that $\prod_{i=1}^{n} X_{i}$ is sufficient estimator for θ .

Or

(b) If the number of weekly accidents occurring on a mile stretch of a particular road follows Poisson distribution with parameter λ then find the maximum likelihood estimate of parameter λ on the basis of the following data:

No. of accidents	0	1	2	3	4	5	6
Frequency	10	12	12	9	5	3	1

18. (a) (i) The following data are small random samples of results in 8 – CO3- App (8) cities.

City I	15	18	17	14	18	10	12	16
City II	10	9	8	11	7	13		
City III	21	20	22	14	23	16	24	

Conduct the H – test to determine whether evidence exists that there are differences in these cities.

(ii) The following data constitute a random sample of 15 CO3-App (8) measurement of the octane rating of a certain kind gasoline:99.0 102.3 99.8 100.5 99.7 96.2 99.1 102.5 103.3 97.4 100.4 98.9 98.3 98.0 101.6. Using sign test for 98.6 at the 0.05 level of significance.

Or

CO1- App (16)

CO2- App (16)

(b) (i) The following data are a random sample of consumer's income CO3- App (8) and expenditure on certain luxury items. Compute the rank correlation coefficient and test for the existence in the population.

Income	28	41	39	52	14	53	45	35	41	36	39
Luxury items	10	23	50	45	63	74	62	57	69	73	80

(ii) 40 people were selected at random in the following order CO3-App (8) MMFFF FMFFM MFMMM MFFMM FMFFM MMMF FMFMM FFMMMF. Assuming the population has 50% men and 50% women, is true that the people were selected at random?

19. (a) Compute the seasonal indices by ratio to moving average method for the following series:

CO4- App (16)

year	I	II	III	IV
1993	321	348	348	348
1994	327	351	354	348
1995	342	359	381	345
1996	364	390	401	385

Or

(b) The following table gives the population of India:

CO4- App (16)

Year	1989	1990	1991	1992	1993	1994	1995	1996
population	76	80	130	144	138	120	174	190

Compute the trend values by using the equation $y = ab^x$. Draw a graph using trend values and estimate the population in 2000.

20. (a) (i) Write a R program to get the first 10 Fibonacci numbers.

CO5- App (8)

(ii) Write a R program to find the maximum and the minimum CO5- App (8) value of a given vector.

Or

(b) Write a R program to create an array of two 3x3 matrices each with CO5- App (16) 3 rows and 3 columns from two given two vectors. Print the second row of the second matrix of the array and the element in the 2ndrow and 3rd column of the 1st matrix.