A	Reg. No. :											
	Question P	aper	Cod	le:R	2M	08						
B.E./B.7	Гесh. DEGREE EX.	AMIN	ATIO	N, A	PRI	L / N	<u></u> 1АҮ	202	5			
	Seco	ond Ser	neste	r								
	Computer Scien	ce and	Busi	ness s	syste	ems						
R21UM	MA208- LINEAR A	LGEB	RA A	ND 1	NUN	1ER	ICA)	LTE	CHN	JIQU	JES	
	(Regu	lations	R202	21)								
Duration: Three hours							Ma	ıxim	um:	100]	Mark	S
	Answer	ALL (Quest	ions								
	PART A - ((10×1)	= 10	Marl	ks)							
1. If 0 3 4 are the Eige	en value of a matrix	A ther) ₄ =	:						C	O1-	App

		Computer Science	e and Business systems	S
	R21U	MA208- LINEAR AL	GEBRA AND NUME	RICAL TECHNIQUES
		(Regula	tions R2021)	
Dur	ation: Three hours			Maximum: 100 Marks
		Answer A	ALL Questions	
		PART A - (1	$0 \times 1 = 10 \text{ Marks})$	
1.	If 0,3,4 are the Eig	gen value of a matrix A	A then $ A = $	CO1- App
	(a)12	(b)0	(c)3	(d) 4
2.	If $A = \begin{pmatrix} a & 1 \\ 3 & b \end{pmatrix}$ has	s Eigen values of 2,-2 t	then a and b are	CO1- App
	(a) 1,-1	(b) -1,-1	(c) 1,1	(d) 0,1
3.	By Gauss eliminat	ion method, solve $x +$	y = 2, $2x + 3y = 5$	CO2- App
	(a)1,2	(b) 1,1	(c) 1,0	(d) 0,1
4.	The principle of tri	angularisation method	is	CO2-U
	(a) A=LU	(b) L=AU	(c) U=LA	(d) A=UI
5.	Newton –Raphson $x^2 - 2 = 0$	method is used to fi	and the root of the e	quation CO3- App
	(a)-1	(b) $\sqrt{2}$	(c) $-\sqrt{2}$	(d) 0
6.	The n th divided dif	ference of n th degree p	olynomial is	CO6- U
	(a) constant	(b) variable	(c) equal	(d) unequal
7.	Any linear transfor	rmation $T: V \to W$ can	be represented by a	CO6- U

(c) square

(d) matrix

(a) Line

(b) Circle

A vector field in Rⁿ is a function 8.

CO6- U

(a) F vector $\rightarrow 0$ (b) F vector $\rightarrow R^n$: R^n (c) F vector $\rightarrow R^n$ (d) F vector: $R^n \rightarrow R^n$

In a vector space find $\|\alpha x\| =$

CO6- U

(a) $|\alpha| + |x|$

(b) $|\alpha| - |x|$

(c) $|\alpha| |x|$

(d) $|\alpha|/|x|$

10. The norm of (3,-4,0) is _____

CO5- App

(a) -4

(b) 3

(c) 0

(d) 5

PART - B (5 x 2= 10 Marks)

11. Explain the Cayley Hamilton theorem and its uses

CO6 -U

12. Apply Gauss-Jordan method calculate the inverse of

CO2-App

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$$

13. Show that newton's Raphson formula to find \sqrt{N} can be expressed in the CO3-App form $x_{n+1} = \frac{1}{2} \left[x_n + \frac{N}{x_n} \right]$.

14. State any two properties of linear transformation

CO6 -U

15. Verify triangle inequality for the following data ||x + y|| = 6, ||x|| =3 and ||y|| = 4

CO6- U

 $PART - C (5 \times 16 = 80 \text{ Marks})$

16. (a) (i) Find all the eigenvalues and eigenvectors of the matrix

CO1-App (8)

$$\begin{bmatrix}
 -2 & 2 & -3 \\
 2 & 1 & -6 \\
 -1 & -2 & 0
 \end{bmatrix}$$

(ii) Using Cayley Hamilton theorem find A⁻¹ when

CO1-App (8)

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}.$$

(b) Apply the orthogonal transformation reduce the following CO1-App quadratic forms into canonical form $Q = 6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4zx$, find its rank, index, signature and nature

- 17. (a) (i) Apply Gauss elimination method to solve5x-2y+3z=18,x+7y- CO2-App (8) 3z=-22,2x-y+6z=22.
 - (ii) Solve the following system of equations by Gauss Jordan CO2-App (8) method x+y+z=6,3x+3y+4z=20,2x+y+3z=13

Or

- (b) Solve by using LU decomposition method 2x+5y+2z=18;x+2y+3z=14;3x+y+5z=20 (16)
- 18. (a) (i) Apply Newton Raphson Method Calculate a root of CO3-App (8) $x \log_{10} x 1.2 = 0$ correct to 3 decimals.
 - (ii) Solve by using Gauss Seidal 3x-y+z=1,3x+6y+2z=0,3x+3y+7z=4

Or

(b) (i) Using Lagrange's interpolation formula find f(3) for the following data

X	0	1	2	5
Y	2	3	12	147

(ii) From the following data find y at x=84

CO3-App (8)

CO3- App (8)

CO3-App

(8)

X	40	50	60	70	80	90
Y	184	204	226	250	276	304

- 19. (a) (i) Verify the vectors (1,2,0), (2,3,0), (8,13,0) in \mathbb{R}^3 is a basis of CO4- App (8) \mathbb{R}^3
 - (ii) Find the dimension of the subspace spanned by the vectors CO4- App (1,2,-3), (0,0,1), (-1,2,1) in $V_3(R)$

Or

- (b) (i) If T: $R^2 \to R^3$ be linear transformation defined by $T(a_1, a_2) = \text{CO4-App}$ (8) $(a_1 a_2, 0, 0)$ then find nullity (T) ,rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.
 - (ii) Find the matrix of the linear transformation $T: V_2(R) \to \text{CO4-App}$ (8) $V_3(R)$ defined by T(a,b) = (a-b,2a,3a+2b) for the standard basis of $V_2(R)$
- 20. (a) Apply Gram-Schmidt process to construct an orthonormal basis CO5- App for $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (2, -1, 0)$, $v_2 = (4, -1, 0)$ and $v_3 = (4, 0, -1)$

Or

(b) (i) Show that the following function defines an inner product on CO5- App $V_2(R)$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ and

$$\langle x, y \rangle = x_1 y_1 + x_2 y_1 + x_1 y_2 + 4x_2 y_2$$

(ii) If x = (2,1+i,i) and y = (2-i,2,1+2i) then verify CO5-App (8) triangle inequality.