Reg. No.:						

Question Paper Code: R4D04

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Computer Science & Business Systems

R21UCB404 – DESIGN AND ANALYSIS OF ALGORITHM

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

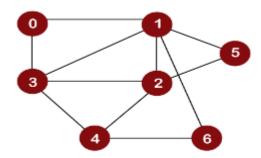
PART A - $(10 \times 2 = 20 \text{ Marks})$

1.	Define the term time complexity and space complexity.	CO1- U
2.	Find GCD(31415, 14142) by applying Euclid's algorithm.	CO2-App
3.	Differentiate the methods involved in Brute force approach and Divide & Conquer approach.	CO1- U
4.	Write an algorithm to find the Depth First Search.	CO1-U
5.	Define dynamic programming with an example.	CO1- U
6.	List out the usage or need of Flyodwarshall algorithm.	CO1- U
7.	Name the constraints used in backtracking problem with an example.	CO1- U
8.	List the procedure used in recursive backtracking algorithm.	CO1- U
9.	Compare NP hard and NP complete problem.	CO1-U
10.	Write the difference between Deterministic & Non Deterministic algorithms with an example.	CO1- U
	PART – B (5 x 16= 80 Marks)	

 $PART - B (5 \times 16 = 80 \text{ Marks})$

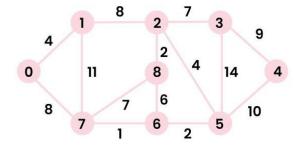
11. (a) Explain in detail about fundamentals of algorithmic problem CO1- U solving. (16)

Or


(b) Explain any two Euclid's, Consecutive integer checking algorithm CO1- U and Middle school method with an example.

- 12. (a) Analyze how selection sort is performing with an example
- CO2- App (16)

Or


(b) Apply the DFS algorithm for the given graph

CO2- App (16)

13. (a)

CO2- App (16)

Apply the Dijikstra's algorithm for above mentioned graph.

CO2- App (16)

Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm.

14. (a) Solve the sum of subset problems using backtracking algorithmic CO2- App (16) strategy for the following data: n = 4 W = (w1, w2, w3, w4) = (10, 20, 30 and 40) and sum = 50.

Or

(b) Consider knapsack problem: n = 8. (W1, W2, W3, W4, W5, W6, CO2-App (16) W2, W8) = (1, 11, 21, 23, 33, 43, 45, 55), P = (11, 21, 31, 33, 43, 53, 55, 65), m = 110. Solve the problem using backtracking approach.

15. (a) Explain in detail about the P, NP, NP complete and NP hard CO1-U (16) classes with a diagram.

Or

- (b) (i) Explain about Reduction Source Problems with example. CO1- U (8)
 - (ii) Compare NP-hard and NP-completeness problems with CO1-U (8) examples.