	Question Paper Code:U9377		
B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025			
	Open Elective		
	21UEE977- SOLAR POWER PLANTS		
	(Regulations 2021)		
	(Common to All Engineering Branches)		
Duration	Three hours Ma	ximum: 100 Mar	ks
	Answer ALL Questions		
	$PART - A (5 \times 20 = 100 \text{ Marks})$		
1. (a)	Design a small-scale hydropower plant for a remote area. Consider the available water flow, terrain, and power requirements. Appethe principles of hydroelectric generation to determine to appropriate capacity, turbine type, and generation system. Or	oly	(20)
(b)	Design a hybrid nuclear power plant system integrated we renewable energy sources. Apply energy management princip to optimize power generation and grid stability.	* *	(20)
2. (a)	Explain the working principle of the Carnot cycle. Describe to four distinct processes involved and their significance in achievi maximum efficiency in a heat engine. Or		(20)
(b)	Explain the working principle of the Otto cycle. Describe the for processes involved and their significance in converting he energy into mechanical work.		(20)
3. (a)	Design a solar water heating system using a flat plate collector a residential building. Apply the principles of heat transfer select appropriate materials, collector size and orientation optimize system performance. Or	to	(20)
(b)	Design a solar energy collection system using Compour Parabolic Receivers (CPRs) for a residential application. Apply to principles of optics and thermal energy conversion to optimize to efficiency of the system.	the	(20)

Reg. No.:

4. (a) Examine the key differences between Stand-Alone Solar PV CO4- Ana (20) Systems and Grid-Connected Solar PV Systems in terms of design, components, and performance. Recommend a more suitable system for both urban and rural areas with proper justification

Or

- (b) Analyze the efficiency factors of Concentrating Photovoltaic CO4- Ana (20) (CPV) systems compared to traditional photovoltaic systems. Discuss how concentration ratios, multi-junction solar cells, and cooling mechanisms influence overall system performance and energy output.
- 5. (a) Analyze the different types of power tariffs used for energy CO5- Ana (20) consumption. Compare their advantages and disadvantages for residential, commercial and industrial consumers.

Or

(b) Analyze the trade-off between capital costs and operating costs for CO5- Ana different types of power plants. Discuss how technologies with high capital costs, such as nuclear and renewable energy plants, can have lower operating costs compared to fossil fuel-based plants, and explain the economic implications of this trade-off over the plant's lifetime.

(20)