Question Paper Code: R4M23

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Answer ALL Questions PART A - (10 x 1 = 10 Marks) 1. Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be	
Duration: Three hours Answer ALL Questions PART A - (10 x 1 = 10 Marks) 1. Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) 6. Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in	
Answer ALL Questions PART A - (10 x 1 = 10 Marks) 1. Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in	
Answer ALL Questions PART A - (10 x 1 = 10 Marks) 1. Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) and a finite content of the formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in	
PART A - (10 x 1 = 10 Marks) 1. Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in	um: 100 Marks
 Order of convergence of iteration method is (a) 1 (b) 2 (c) 3 When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square The nth divided difference of nth degree polynomial is (a) constant (b) variable (c) equal In Cubic Spline, M₀ = M_n = (a) 1 (b) n (c) 3 In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (degree	
 (a) 1 (b) 2 (c) 3 2. When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square 3. The nth divided difference of nth degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M₀ = M_n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (d) 6. Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in 	
 When Gauss Elimination method is used to solve AX=B, A is transferred in a matrix (a) lower triangular (b) upper triangular (c) square The nth divided difference of nth degree polynomial is (a) constant (b) variable (c) equal In Cubic Spline, M₀ = M_n = (a) 1 (b) n (c) 3 In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (degree (a) 1 (b) 2 (c) 3 The Fourth order Runge – Kutta methods are used widely in 	CO6- U
a matrix (a) lower triangular (b) upper triangular (c) square 3. The n th divided difference of n th degree polynomial is (a) constant (b) variable (c) equal 4. In Cubic Spline, M ₀ = M _n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) 6. Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in	(d) 0
 The nth divided difference of nth degree polynomial is (a) constant (b) variable (c) equal In Cubic Spline, M₀ = M_n =	CO6- U
 (a) constant (b) variable (c) equal 4. In Cubic Spline, M₀ = M_n = (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in 	(d) zero
 4. In Cubic Spline, M₀= M_n=	CO6- U
 (a) 1 (b) n (c) 3 5. In Simpson's 3/8 rule the number of subintervals should be (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (c) 6. Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in 	(d) unequal
 5. In Simpson's 3/8 rule the number of subintervals should be	CO6- U
 (a) multiple of 1 (b) multiple of 2 (c) multiple of 3 (degree	(d) 0
 6. Gaussian two point quadrature formula is exact for polynomials up to degree (a) 1 (b) 2 (c) 3 7. The Fourth order Runge – Kutta methods are used widely in 	CO6- U
degree (a) 1	(d) All of these
7. The Fourth order Runge – Kutta methods are used widely in	CO6- U
	(d) 5
	- CO6- U
(a) Abstract (b) Graphical (c) Numerical (d)) None of these

8.	prior values are r	s method CO6- U					
	(a) 1	(b) 2			(c)	3	(d) 4
9.	PDE of second order, if	CO6- U					
	(a) parabolic	(b) ell	iptic		(c)	hyperbolic	(d) None of these
10.	Crank Nicholson's diffe	CO6- U					
	(a) Explicit	(b) Im	plicit		(c)	single step	(d) multi step
		P	ART -	-B (5	x = 10 N	Marks)	
11.	Write the condition of c	CO1- U					
12.	Form the divided differen	CO2- App					
		X	2	5	10		
		у	5	29	109		
13.	. Using two –point Gaussian quadrature formula find					CO3- App	

14. Using Euler's method find y(0.2) given $\frac{dy}{dx} = y + e^x$, y(0) =0. CO4- App

 $\int_{1}^{1} \frac{1}{1+x^2} dx$

15. Classify:
$$U_{xx} - 2U_{xy} + U_{yy} = 0$$
. CO6- U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) (i) Using Newton's Raphson method find the real positive root of CO1- App (8) $x^4 - x - 10 = 0$.

(ii) Solve: x + 3y + 3z = 16, x + 4y + 3z = 18, x + 3y + 4z = 19 CO1- App using Gauss Jordan method. (8)

Or

(b) (i) Solve: 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 CO1- App (8) using Gauss Seidel method.

(ii) Using Power method find numerically largest Eigen value and CO1- App (8) /9 1 8\

the corresponding Eigen vector of the matrix $\begin{pmatrix} 9 & 1 & 8 \\ 7 & 4 & 1 \\ 1 & 7 & 9 \end{pmatrix}$.

17. (a) (i) Using Lagrange's interpolation formula calculate f(10) for CO2-App (8) the following data:

X	5	6	9	11
Y	12	13	14	16

(ii) Using Newton's divided difference formula calculate f(3) CO2-App (8) satisfying the following data:

X	0	1	2	5
y	2	3	12	147

Or

(b) (i) Using Newton's forward interpolation formula calculate f(5) CO2- App (8) for the following data:

X	4	6	8	10
Y	1	3	8	10

(ii) Using cubic spline function calculate f(1.5) for the following CO2- App data: (8)

X	1	2	3	
f(x)	-8	-1	18	

18. (a) (i) Compute the first and second derivatives of y at x = 1.5

CO3-App (8)

X	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7.000	13.625	24.000	38.875	59.000

(ii) Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{1}{1+x^2} dx$ by taking 8 CO3-App (8) intervals.

Or

- (b) (i) Evaluate: $\int_{-1}^{1} \frac{x^2}{1+x^4} dx$ using three point Gaussian quadrature CO3-App (8) formula.
 - (ii) Evaluate: $\int_0^1 \int_0^1 \frac{1}{1+x+y} dx \cdot dy$ by using Simpson's rule by CO3-App taking h=k=0.5
- 19. (a) (i) Using Taylor's series method find y(1.1) given y' = x + y with CO4-App y(1) = 0.
 - (ii) Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, y(0.2) = 0.2027, y(0.4) = CO4-App (8) 0.4228, y(0.6) = 0.684 evaluate y(0.8) by Milne's Method.

Or

- (b) (i) Using R.K Method of 4th order, solve $\frac{dy}{dx} = y + x^2$ with y(0) = CO4-App (8) 1 at x = 0.2.
 - (ii) Given $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0, y(0.2) = 0.2027, CO4-App (8) y(0.4)=0.4228, y(0.6) = 0.6841 evaluate y(0.8) by Adams Bash forth Method.
- 20. (a) Solve the Poisson equation $u_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < CO5-App (16) 1, u(0, y) = 0, u(x, 0) = 0, u(1, y) = 100, u(x, 1) = 100 and h = 1/3.

Or

- (b) (i) Solve: $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, u(0, t) = 0, u(4,t) = 0, u(x,0) = x(4 x). CO5-App Take h = 1 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.
 - (ii) Using Crank-Nicholson's difference equation to solve $\frac{\partial^2 u}{\partial x^2} = \frac{\text{CO5-App}}{16 \frac{\partial u}{\partial t}}$, u(0,t) = 0, u(1,t) = 100t, u(x,0) = 0 compute u for one time step function with h=0.25.