A
\mathbf{A}

Question Paper Code: R4905

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Chemical Engineering

R21UCH405- MASS TRANSFER-I

(Regulations R2021)

Duration: Three hours Maximum: 1	100 Marks	
Answer ALL Questions		
PART A - $(10 \times 1 = 10 \text{ Marks})$		
1. If the vapour pressure of the two components in a binary mixture is same, the it is a	n CO1-U	

- c) Differential boiling point d) None of the mentioned

 2. In a certain process, there is a variation in the driving force between the
 - phases, such a process is
 - a) Batch process b) Semi-batch process
 - c) Continuous process d) Isothermal process
- 3. Which of the following is present in turbulent flow mass transfer? CO1-U
 - a) Slow mass transfer
- b) Less mass transfer

c) Eddy currents

a) Isotope

d) Eddy diffusion

b) Azeotrope

- 4. Diffusion is the result of:
- CO1-U
- a) Random motion of particles
- b) Concentration gradient
- c) Kinetic energy of particles
- d) All of the mentioned
- 5. In humidification the gas is ______ in the liquid for the mass transfer to take part.
- CO1-U

CO1-U

- a) Soluble
- b) Insoluble
- c) Partially soluble
- d) Inert

6.	Humidification is a			CO1-	·U
	a) Mass transfer operation	b) Heat transfer operation			
	c)Simultaneous heat and mass transfer	d) Neither mass and heat t	ransfer opera	ation	
7.	For estimating the drier size it is necess	sary to know		CO1-	U
	a) Time of drying b) Heat of drying	c) Speed of drying	d) All of the	ll of the mentioned	
8.	Direct dryers are			CO1-	U
	a) Batch driers	b) Continuous drier	S		
	c) Semi-batch driers	d) None of the ment	ioned		
9.	How does concentration affect crystall	ization?		CO1-	U
	a) Increase in concentration leads to lar	rge crystals			
	b) Decrease in concentration leads to la	arge crystals			
	c) Increase in concentration leads to sn	nall crystals			
	d) Decrease in concentration leads to s	mall crystals			
10.	What is meant by crystallization?			CO1-	U
	a) Concentration of atoms into a highly	structured form			
	b) Solidification of atoms into a highly	structured form			
	c) Solidification of solution				
	d) Concentration of solution				
	PART – E	$3 (5 \times 2 = 10 \text{ Marks})$			
11.	Define a mass transfer.			CO1-U	
12.	What are the factors affecting the mass	transfer Coefficient?		CO2-App	
13.	How is the humidity ratio calculated us	sing a psychrometric chart?		CO2-App	
14.	What are the key steps involved in des	igning a dryer?		CO2-App	
15.	What is the difference between batch a	nd continuous crystallization	1?	CO3-Ann	
	PART -	- C (5 x 16= 80 Marks)			
16.	(a) Discuss briefly about the classific	•	cions. CO1-	- U (10	6)
	(b) Define mass transfer and explain engineering and industrial process	•	mical CO1-	- U (10	6)

17. (a) Calculate the rate of sublimation from a Cylinder of Naphthalene CO2-App 0.075m ID. by 6m long into a stream of pure Carbon dioxide flowing at a velocity of 6m/s at 1atm & 100^{-c} the vapour Pressure of Naphthalene at 373k and 1 atm. May be taken as 10mmHg and the diffusivity of naphthalene in Carbon dioxide as a 8.3x10⁻⁶m²/s. Density & Viscosity of Carbon dioxide are 0.946kg/m³& 0.021x10⁻³ p respectively at operating condition. $C_f = 0.023(Re)^{0.2}$, $(f/2=3.1648x10^{-3})$ & $(NA=6.073x10^{-6}kmol/m^2 s)$. Use analogy.

Or

- (b) A pure gas is absorbed in a laminar liquid jet the volumetric flow CO2-App rate of the liquid was 4ccls & the diameter and length of jet were 0.1mm & 3mm respectively. The rate of absorption of A at atmospheric then Diffusivity is 1.23x10⁻⁵ cm²/s pressure was 0.12cc/s at 273k.the solubility of gas final stage temperature at 303k is (CA*0.001gmol/cc.atm then CA is 0gmol/cc.atm Estimate the mass transfer coefficient. If the other diameter of jet is reduced to 0.09cm, under otherwise the same conditions how it would affect the rate of evaporation. Assume the validity of higbie's penetration theory using mass transfer coefficient then a initial time at 22414 s & final time at 0.006s.
- 18. (a) Derive the general form of the humidity ratio and discuss its physical significance. CO3-Ann (16)

Or

(b) Derive the Equation for Degree of saturation.

CO3-Ann (16)

(16)

(16)

19. (a) Wet solids contains 120kg/hr of dry stuff are dried continuously CO2-App in a specially designed drier cross circulated with 2,000kg per hour of dry air under the following conditions:

Ambient air temperature=20.c

Exhaust air temperature=75.c

Evaporation of water=150kg/hr

Outlet solids moisture content=0.25kg/hr

Inlet solids temperature=15.c

Outlet solids temperature=65.c

Power demand=5kw

Heat loss=18kw

Estimate heater load per unit mass of dry air and fraction of this heat used in evaporation of moisture.

Data:

Mean specific heat of dry air=1kjkg⁻¹k⁻¹

Or

- (b) 1500kg dry weight of non-porous solid is dried under constant CO2-App drying conditions. With an air velocity of 0.25 m/s,so that the surface area of drying is 4.5m² The critical moisture content of material may be taken as 0.155kg water /kg dry solids?

 (i) If the initial rate of drying is 0.2 g/m² s How long will it taken
 - (i) If the initial rate of drying is 0.2 g/m².s How long will it taken to dry the material from 0.10 to 0.020 kg water / kg dry solids?
 - (ii) If the air velocity were increased to 3.0m/s, what would be the anticipated saving in time if surface evaporation is controlling.(Assume,x*=0).
- 20. (a) Mother liquor after crystallization has a solute content of 49.8 kg CO2-App (16) of cacl₂ per 100kg of water. Find out the weight of this solution needed to dissolve 100kg of cacl₂.6H₂O at 25^{.c} is 81.9 kg of cacl₂/100 kg of water.

Or

- (b) Sodium nitrate solution at 45.c contains 30% by weight of sodium CO2-App (16) nitrate.
 - (i) Find out the percentage saturation of this solution.
 - (ii) Find out the weight of sodium nitrate crystal formed if 1500kg of this solution is cooled to 15.c
 - (iii) Find the percentage yield of this process.

(16)