4	-	
4	1	•
ч	l	

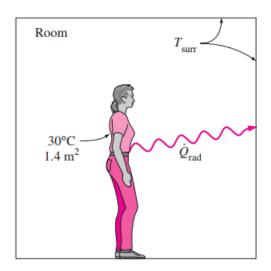
Reg. No.:						

Question Paper Code: R4903

B.E. / B.Tech. DEGREE EXAMINATION, APRIL /MAY 2025

Fourth Semester

Chemical Engineering


		R21UCH403-	- HEAT TRANSFE	R			
		(Regul	ations R2021)				
Dura	ation: Three hours			Maximum: 1	00 Marks		
		Answer	ALL Questions				
		PART A - ($10 \times 1 = 10 \text{ Marks}$				
1.	For a heat sink appl for heat dissipation?	ication, which type	C		CO1-U		
	(a) Radial fins		(b) Flat plate	fins with high fin den	sity		
	(c) Pin fins arranged	in a uniform grid	(d) A solid b	lock of material			
2.	Which material is t such as air-cooled ra (a) Copper	• •		mance applications (d) Glass	CO1- U		
2	() 11	,		,	G04 II		
3.	The heat transfer coefficient in an annular space is influenced by CO1-U						
	(a) The temperature difference only						
	(b) The Reynolds number and the gap between the cylinders						
	(c) The viscosity and conductivity of the fluid						
	(d) All of the above						
4.	During condensation, the heat transfer process is primarily CO1-U						
	(a) Conduction	(b) Radiation					
	(c) Convection	(d) Combination	of conduction, conve	ection, and latent heat	transfer		
5.	A surface for whith throughout the entire	range of waveleng	th is called	•	CO1-U		
	(a) Opaque	(b) Grey	(c) Specular	(d) Diathe	rmanous		

6.	The radiant heat transfer from a plate of 2.5 cm2 area at 1250 K to a very cold enclosure is 5.0 W. Determine the emissivity of the plate at this temperature							
	(a) 0.544	(b) 0.144	(c) 0.044	(d) 0.244	ļ			
7.	· ·	V/m ² K and heat	area of 50 cm ² . The overall capacity of both hot and c		CO1-U			
8.	NTU is a number of	transfer units, di	mensionless parameter defin	ed as	CO1-U			
	(a) U A/C _{MIN}	(b) 2 U A/C _M	$_{\text{MIN}}$ (c) 4 U A/C $_{\text{MIN}}$	(d) 0.5 U	J A/C _{MIN}			
9.	Which evaporator us	ses the maximum	number of pumps for its op	eration?	CO1-U			
	(a) Forward feed		(b) Backward feed	l				
	(c) Parallel feed		(d) Mixed feed					
10.	What do we mean b	y the term Evapor	rator Consumption?		CO1-U			
	(a) Steam consumed	l in 1hr	(b) Steam produce	ed in 1hr				
	(c) Feed supplied in	1hr	(d) Feed supplied	in 1day				
		PART –	B $(5 \times 2 = 10 \text{ Marks})$					
11.	Define a fin and exp	olain its purpose in	n heat transfer.	(CO1-U			
12.	How does the Reynolds number influence the transition from laminar to CO2-App turbulent flow over a flat plate?							
13.		(CO2-App					
14.	How does a shell and tube heat exchanger differ from a double-pipe heat CO3-An exchanger?							
15.	In a single-effect evaporator, if the latent heat of vaporization is 2200 kJ/kg CO4-App and the mass flow rate of the feed is 0.5 kg/s, calculate the heat duty of the evaporator.							
		PART	– C (5 x 16= 80 Marks)					
16.	Use the genera	al heat conduction rate. Assume steamptions.	al system with different mat on equation to calculate the ady-state conditions and pro-	e total	pp (16)			

- (b) Apply the equation for heat transfer through a composite wall CO2-App with multiple layers to determine the thermal resistance and heat transfer rate. Discuss how different materials in the wall system influence the heat transfer process.
- 17. (a) Define film-wise and drop-wise condensation. Explain the CO1-U process of each type of condensation and describe the main differences between them.

Or

- (b) Describe the phenomenon of nucleate boiling and its importance CO1-U in heat transfer. Identify the main factors affecting nucleate boiling onset, including surface conditions, temperature, and fluid properties. Explain how nucleate boiling improves heat transfer in boiling heat exchangers.
- 18. (a) i) It is a common experience to feel "chilly" in winter and "warm" CO3-Ann in summer in our homes even when the thermostat setting is kept the same. This is due to the so-called "radiation effect" resulting from radiation heat exchange between our bodies and the surrounding surfaces of the walls and the ceiling. Consider a person standing in a room maintained at 22°C at all times. The inner surfaces of the walls, floors, and ceiling of the house are observed to be at an average temperature of 10°C in winter and 25°C in summer. Determine the rate of radiation heat transfer between this person and the surrounding surfaces if the exposed surface area and the average outer surface temperature of the person are 1.4 m² and 30°C, respectively. (8)

(16)

(ii) Write an essay on how microwave ovens work, and explain how they cook much faster than conventional ovens. Discuss whether conventional electric or microwave ovens consume more electricity for the same task. (8)

Or

- (b) Discuss the difference between black body and gray body CO3-Ann (16) radiation. Derive the radiative heat exchange formula between two gray bodies.
- 19. (a) Explain the Effectiveness-NTU method for analyzing heat CO4-App (16) exchangers. Derive the expression for heat exchanger effectiveness in terms of NTU.

Or

- (b) Apply the principles of heat exchanger design to classify different CO4- App (16) types of heat exchangers based on their construction, flow arrangement, and heat transfer mechanism. Discuss how each classification affects the selection of heat exchangers for specific industrial applications
- 20. (a) Compare natural circulation and forced circulation evaporators in CO5- Ana (16) terms of working principle, efficiency, and applications.

Or

(b) Compare the working of a single-effect evaporator with that of a CO5- Ann multiple-effect evaporator in terms of energy efficiency, operating cost, and industrial applications.