Reg. No.:						

Question Paper Code:R2P04

B.E./B.Tech. DEGREE EXAMINATION, APRIL /MAY 2025

Second Semester

Biotechnology

	R21UPH204 -BIOMA	TERIAL PHYSICS			
	(Regulation	as R2021)			
ation: Three hours		Max	imum: 100 Marks		
	Answer A	LL questions			
	PART A - (10	$0 \times 1 = 10 \text{ Marks}$			
A minimum ductility	CO2- U				
(a) 6%	(b) 7%	(c) 8%	(d) 9%		
material is us	CO1- U				
(a) Nylon	a) Nylon (b) Silicon (c) Polymer		(d) Biobrane		
6. An ideal modulus of elasticity comparable to bone should be selected for implantation.					
(a) 810 GPa	(b) 18 GPa	GPa (c) 180 GPa			
The optimal pore size	CO2- U				
(a) 10 to 500 μm	(b) 50 to 500 μm	(c) 10 to 50 μm	(d) 100 to 500 μm		
is an ionized §	gas.		CO1- U		
(a) sol	(b) gel	(c) plasma	(d) arc		
balls are allow process.	ved to rotate inside a	container in ball milling	CO1- U		
(a) Iron	(b) Tungsten	(c) Tin	(d) Lead		
is a type of elemental analysis based on excitation of electron of atom.					
(a) AAS	(b) MS	(c) NMR	(d) FTIR		
	(a) 6% material is us (a) Nylon An ideal modulus of selected for implantat (a) 810 GPa The optimal pore size (a) 10 to 500 μm is an ionized s (a) sol balls are allow process. (a) Iron is a type of of atom.	(Regulation ation: Three hours Answer A PART A - (10 A minimum ductility of is required (a) 6% (b) 7% material is used for wound dressing (a) Nylon (b) Silicon An ideal modulus of elasticity comparable is selected for implantation. (a) 810 GPa (b) 18 GPa The optimal pore size for bone ingrowth is in (a) 10 to 500 µm (b) 50 to 500 µm is an ionized gas. (a) sol (b) gel balls are allowed to rotate inside a process. (a) Iron (b) Tungsten is a type of elemental analysis base of atom.	Answer ALL questions PART A - (10 x 1 = 10 Marks) A minimum ductility of is required for dental implant. (a) 6% (b) 7% (c) 8% material is used for wound dressing applications. (a) Nylon (b) Silicon (c) Polymer An ideal modulus of elasticity comparable to bone should be selected for implantation. (a) 810 GPa (b) 18 GPa (c) 180 GPa The optimal pore size for bone ingrowth is in the range of (a) 10 to 500 μm (b) 50 to 500 μm (c) 10 to 50 μm is an ionized gas. (a) sol (b) gel (c) plasma balls are allowed to rotate inside a container in ball milling process. (a) Iron (b) Tungsten (c) Tin is a type of elemental analysis based on excitation of electron of atom.		

8.	"Cu	(CO1- U					
	(a) S	Source	(b) Monochromator	(c) Sample cell	(d) Detecto	r		
9.	A de	ental implant is a	lso known as		(CO2- U		
	(a) t	exture	(b) fixture	(c) denture	(d) mixture			
10.		is present b	etween the left atrium a	and left ventricle.	(C O2- U		
	(a) T	Tricuspid valve		(b) Pulmonary valve				
	(c) A	Aortic valve		(d) Mitral valve				
			PART - B (5 x	2= 10 Marks)				
11.	Wha	at are the types of	Bio-ceramic materials	?	C	01 - U		
12.	Wri	te a short note on	316L stainless steel?		C	01 - U		
13.	Dra	w hysteresis loop	for phase transition in	shape memory alloys? (SmA	As) Co	O2- U		
14.	Give	Give the comparison of AAS and AES.						
15.	Wha	What are the various types of 3D printing techniques?						
			PART – C (5	x 16= 80 Marks)				
16.	(a)	Explain the app (i) Orthopedic (ii) Wound dres (iii) Dermatolo	devices ssing	s in the field of medicine.	CO1 - U	(16)		
	(b)	Discuss in detail	_	vivo Testing methods.	CO1 - U	(16)		
17.	(a)	Give a detailed properties and i	* *	ceramic implant materials,	CO2-U	(16)		
	(b)	Discuss briefly implantation.		f alumina and carbon in	CO2-U	(16)		
18.	(a)	Explain the sy milling technique		al's using sol gel and ball	CO1-U	(16)		
	(b)			f shape memory alloys and	CO1-U	(16)		

19. (a) Discuss in detail about the instrumentation of FTIR Spectroscopy. (16)CO2-U (b) Explain in detail about NMR Spectrometer. CO2-U (16)Write a Short notes on 20. (a) (16)CO1-U Vascular Graft ii) Stent iii) Orthopedic plates Or (b) Write a Short notes on CO1-U (16)1. Medical 3D cell printing 2. Active biomaterials for mechanobiology