Reg. No. :

Question Paper Code: R4C05

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Biotechnology

R21UBT405 - MOLECULAR BIOLOGY AND GENETICS

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

$PARTA = (10 \times 2 - 20 \text{ Marks})$						
1.	What is chromosomal basis of heredity?	CO2-App				
2.	Given a case of two mutant strains that fail to produce a functional protein, determine whether complementation occurs and justify your answer	CO2-App				
3.	What is the significance of the 3',5'-phosphodiester bond in DNA?	CO1-U				
4.	Describe Chargaff's rule and its significance in DNA structure.	CO1-U				
5.	Mention the beneficial effects of poly adenylation.	CO1-U				
6.	What is the role of Rho factor in Transcription?	CO1-U				
7.	What do you mean by translocation?	CO1-U				
8.	Write a note on Operator genes.	CO1-U				
9.	Mention the function of corepressor.	CO1-U				
10.	Write a note on feedback inhibition.	CO1-U				
PART – B (5 x 16= 80 Marks)						

11. (a) Differentiate between sex-linked, sex-limited, and sex-influenced CO1-U inheritance with suitable examples. (16)

	(b)	and complementary gene action with suitable examples.	COI-U	(16)
12.	(a)	Describe the structural and physicochemical differences between DNA and RNA. Discuss the biological significance of these differences.	CO1-U	(16)
	(b)	Or Describe the Watson and Crick model of DNA structure. How do Chargaff's rules support the double-helix model?	CO1-U	(16)
13.	(a)	Explain self-splicing introns. How do class I introns differ from class II introns.	CO1-U	(16)
	(b)	Or Give a detailed account on prokaryotic transcription initiation, elongation and termination mechanisms with suitable diagram and factors involved in it.	CO1-U	(16)
14.	(a)	Given a bacterial protein that loses its function after translation, suggest possible post-translational modifications that could restore its activity and justify your choices Or	CO2-App	(16)
	(b)	Describe about the factors involved in prokaryotic transcriptional process and give its role in each step of the process.	CO2-App	(16)
15.	(a)	If you were designing a genetically engineered strain of <i>E. coli</i> that continuously synthesizes tryptophan regardless of external supply, how would you modify the Trp Operon regulation? Or	CO2-App	(16)
	(b)	If a bacterial strain has a mutation in one of the structural genes of the lac operon, predict its effect on lactose metabolism and suggest a possible solution to restore function.	CO2-App	(16)