

Question Paper Code:R4C02

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Biotechnology

R21UBT402 APPLIED THERMODYNAMICS FOR BIOTECHNOLOGISTS

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

1.	Define state function.	CO1- U
2.	Differentiate open and closed system.	CO3- App
3.	Give the expression for Total property and partial molar property.	CO1-U
4.	Identify the application of chemical potential in thermodynamics.	CO1-U
5.	State Gibb's phase rule.	CO2-U
6.	Define bubble point.	CO2-U
7.	Predict the effect of pressure on equilibrium conversion of a gas-phase chemical reaction.	CO3-App
8.	Is the Gibbs free energy change of a chemical reaction related to the work done by the system? Justify your answer.	CO3-App
9.	Calculate the degree of reduction of carbon in glucose.	CO3-App
10.	Hydrogen reacts with oxygen to form water. Sketch the elemental balances for the above reaction.	CO3-App

11. (a) Derive the relationship between enthalpy, internal energy. Also, CO3-App (16) derive an expression for the Mathematical statement of first law of thermodynamics for non-flow process.

Or

- (b) Predict the Maxwell's relation from the fundamental property CO3-App (16) relations of enthalpy, Helm-Holtz free energy and Gibbs free energy.
- 12. (a) The partial molar properties of the components are related to one CO3-App (16) another. Justify the above statement with corresponding derivations.

Or

- (b) Derive an expression for finding the chemical potential of a CO3-App solution, explaining the effect of temperature and pressure on the same.
- 13. (a) A solution contains the mixture of toluene and benzene which CO4-App doesn't behave like a normal binary mixture. Predict the special feature of this mixture and sketch the V-L equilibrium also explain in detail about the properties of this mixture.

Or

- (b) Predict the phase diagrams for binary solutions considering CO4-App (16) constant pressure equilibria and constant temperature equilibria.
- 14. (a) Explain in detail about equilibrium constants and the methods for CO2-U evaluation of the same. (16)

Or

- (b) Consider any chemical reaction that is in equilibrium, explain in CO2-U (16) detail about the factors that affect equilibrium conversion.
- 15. (a) Illustrate with an example to find the stoichiometric coefficient CO4-App (16) for calculation of the anabolic reaction for autotrophic growth.

Or

(b) Sketch the microbial growth curve, discuss in detail about the CO4-App (16) phases and the thermodynamics involved in growth of a microorganism.