A		Reg. No.:					
		Question Pap	er Code: U	4M24			
	B.E./I	B.Tech. DEGREE EX	KAMINATION	N, MAY 2	025		
		Fourth	Semester				
		Bio Medica	l Engineering				
	21UMA424	- PROBABILITY A	ND INFEREN	TIAL ST	ATISTICS		
		(Common to I	Bio Technology	y)			
		(Regulat	ions 2021)				
Dur	ration: Three hours	Answer AI	LL Questions	Ma	ximum: 10)0 Mark	S
		PART A - (10	x 1 = 10 Mark	as)			
1.	Probability of sure eve	ent is				CO	Э6 - U
	(a) 0	(b) 1	(c) 2	1.0577	` ')10	
2.	For Binomial distribut $(a) 9 c_x \frac{2^x}{3} \frac{1}{3}^{n-x}$				(d) none of		- App ove
3.	If X and Yare ind X and Y is	dependent then co	rrelation coef	ficient be	etween	CO	Э6 - U
	(a) 1	(b) 0	(c) -1		(d)) 10	
4.	The regression lines o $3x + y = 10$, $3x+4y=12$			en by		CO2	- Ana
	(a) 1/2	(b)-1/2	(c)-1		(d)		
5.	Given $R(\tau) = 25 + \frac{4}{1+6}$	$\frac{1}{\tau^2}$ What is $E[X^2(t)]$?	,			CO3	- App

(a) 25 (c) 26 (b)29(d)27If the Random Process $\{X(t)\}$ with mean has Auto correlation function CO3- App $R(\tau) = 16 + 9e^{-|\tau|}$ then the mean value is (b) 25 (c) 0(d) 4(a) 16

If X(t) is the white noise process, then its power spectrum is given by

 $(d)^{S}(\omega) = \frac{N_0}{2}$

CO6- U

 $S(\omega) = \frac{N_0}{4\pi}$ (b) $S(\omega) = \frac{N_0}{4} \qquad (c) S(\omega) = \frac{N_0}{2} S(\tau)$ CO₄- App

The average power of the auto correlation function is $R_{xx(\tau)=3e^{-3|\tau|}}$

(a) 3

(b) 6

(c) 2

(d) 0

The degrees of freedom for the sample size n=25 in t test is . CO6- U

(a) 20

(b) 22

(c) 24

(d) 26

10. F-test is used to test for equality of

CO6- U

(a) Sample Mean (b) Variance

(c) Population mean

(d) All the above

$$PART - B$$
 (5 x 2= 10Marks)

- 11. A coin is tossed twice; find the probability that there will appear at least one CO1-App head?
- 12. Find the value of K, if f(x, y) = Kxy in 0 < x, y < 1 is to be the joint density CO2-Ana function
- 13. The power spectrum of a WSS process X (t) is given by S_{xx} (ω) = $\frac{4}{4+\omega^2}$ Find CO₃-App the autocorrelation.
- 14. Calculate the value of the system transfer function, if the input of the system CO4-App with impulse response $h(t) = e^{-3t}U(t)$.
- 15. A sample of size 10 has mean 58, standard deviation 18.4 and population CO5-Ana mean 50, Compute the calculated value of 't' distribution.

$$PART - C$$
 (5 x 16= 80Marks)

X has the following probability CO1-App 16. (a) (i) A Random Variable (8) distribution

X=X	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$

Find (i) 'k'

(ii)
$$P(X > 6)$$
, $P(0 < X < 4)$

(ii) Define Binomial distribution. Find the moment generating CO1-App (8) function and Hence find mean and variance.

Or

(b) (i) If
$$f(x) = \begin{cases} \frac{k}{1+x^2}, -\infty < x < \infty \\ o, elsewhere \end{cases}$$
 is the Probability Density Function CO1-App (8)

of a Random variable X,

- (i) Find K (ii) distribution function of F(x).
- (ii) State and Prove the memoryless property for an Exponential CO1-App (8) **Property**

17. (a) From the following data, find (i) the two regression equations CO2-Ana (ii) the coefficient of correlation between the marks in Economics and Statistics (iii) the most likely marks in Statistics when marks in Economics are 30

Marks in										
Economics	25	28	35	32	31	36	29	38	34	32
Marks in										
Statistics	43	46	49	41	36	32	31	30	33	39

Or

(b) (i) Obtain the Correlation coefficient for the following heights (in CO2-Ana inches) of fathers X and their sons Y.

X	65	66	67	67	68	60	70	72
Y	67	68	65	68	72	72	69	71

(ii) If the probability density function of a two dimensional random CO2-Ana variable X and Y is given by f(x, y) = (x + y), 0 < x, y < 1 (8)

Find the probability density function of U = XY.

18. (a) (i) If the auto correlation function of the random binary CO3-App (8) transmission is given by

$$R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$$

Find the Power spectral density function.

(ii) A stationary process has an autocorrelation function given by CO3-App (8) $R(\tau) = 25 + \frac{4}{1 + 6\tau^2}$ Find the Mean and Variance

Or

(b) (i) If the Power spectral density of a WSS processes is given by CO3-App (8)

$$S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|) & ; & |\omega| \le a \\ 0 & ; & |\omega| > a \end{cases}$$

Find the auto correlation function of the Process

(ii) Find power spectral densities of the following auto correlation CO3-App (8) function $R(\tau) = e^{\frac{-\alpha^2 \tau^2}{2}}$

(16)

19. (a) A random process X (t) having the autocorrelation function $R_{xx(\tau)=P} e^{-\alpha|r|}$ Where b is a constant is applied to the input of the system with impulse response $h(t) = e^{-bt}U(t)$ where b is a constant. Find the autocorrelation of the output Y (t).

Or

(b) If X (t) is a WSS process and if

$$Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du \text{ then}$$

$$(i).R_{XY}(\tau) = R_{XX}(\tau) * h(\tau) \qquad (ii).R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$$

(iii).
$$S_{XY}(\omega) = S_{XX}(\omega) * H(\omega)$$
 (iv). $S_{YY}(\omega) = S_{XX}(\omega) * |H(\omega)|^2$

20. (a) Two researchers A and B adopted different techniques while rating CO5-Ana (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

	* *				
Researchers	Below	Average	Above	Genius	Total
	Average		Average		
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

Or

(b) Two independent samples of sizes 9 and 7 from a normal CO5-Ana (16) population had the following values of the variables.

1 1			\mathcal{L}						
Sample	18	13	12	15	12	14	16	14	15
I									
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly.