Dog No.						
Reg. No. :						
0						

Question Paper Code:U6C01

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Sixth Semester

Biotechnology

21UBT601 GENETIC ENGINEERING

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Dur	ttion. Three nours	viaxiiiuiii. 100 iviaiks							
Answer ALL Questions									
PART A - $(10 \times 2 = 20 \text{ Marks})$									
1.	What is the function of modification enzymes?	CO1- U							
2.	Differentiate between RFLP and RFLP markers.	CO2- App							
3.	What is chromosomal walking?	CO1- U							
4.	How are DNA libraries screened using nucleic acid probes?	CO2- App							
5.	How does random mutagenesis differ from site-directed mutagenesis?	CO2- App							
6.	What is phage display technology?	CO1- U							
7.	What are bacteriophage vectors? Give an example.	CO1- U							
8.	Define cosmid vectors and their applications.	CO1- U							
9.	How are Genetically Modified Organisms (GMOs) used in medicine?	CO3-App							
10.	What are the benefits of GMOs in agriculture?	CO1- U							
	PART – B (5 x 16= 80 Marks)								
11.	(a) Compare the characteristics of different types of cloning vectors and their applications.	CO1- U (16)							
	Or (b) How can RFLP be applied in genetic fingerprinting and disease diagnosis? What are its practical implications in forensic and	CO1- U (16)							

medical research?

12. (a) How can different DNA sequencing techniques be applied in CO2-App (16)genomic research, and what factors determine their suitability for specific applications? Or (b) How can hybridization techniques be effectively utilized in DNA CO2-App (16)library screening, and what makes them essential for identifying specific genetic sequences? 13. (a) How do Inverse PCR and Nested PCR improve DNA CO2-App (16)amplification efficiency as well as accuracy, and in what experimental scenarios would each method be most suitable? Or (b) How is phage display technology applied in protein engineering, CO2-App (16)and what advantages does it offer in developing therapeutic proteins and antibodies? 14. (a) Explain the role of yeast and insect vectors in recombinant CO1-U (16)protein expression and describe their key advantages in biotechnology applications.

Or

- (b) Describe the principles and advantages of T7 expression vectors CO1- U in bacterial protein production. (16)
- 15. (a) How can molecular diagnostic tools be applied for early disease CO2-App (16) detection, and what factors influence their accuracy and reliability in clinical settings?

Or

(b) Demonstrate how CRISPR-Cas9 technology can be applied to CO2-App (16) correct genetic disorders.