Reg. No. :											
------------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code:R4B03

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Biomedical Engineering

R21UBM403- COMMUNICATION SYSTEMS

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

	PART A - $(10 \times 2 = 20 \text{ Marks})$							
1.	State the Carson's Rule.							
2.	Write down the condition of under Modulation also draw the spectrum of Under modulated wave.							
3.	. A television signal with a bandwidth of 4.2MHz is transmitted using binary PCM the number of quantization level is 512 calculate the Transmission bandwidth.							
4.	How do you generate the PM using FM?							
5.	Plot the digitally modulated waveforms for the binary data 110110101 using QPSK.							
6.	6. Determine the bandwidth and baud for the FSK signal with a Mark frequency of 49KHz and space frequency of 51KHz and bit rate of 2Kbps.							
7.	7. Define Entropy.							
8.	8. Give error correcting capability of a linear block code.							
9.	9. Compare TDMA and FDMA.							
10.	0. Write the advantages of FH SS techniques.							
PART – B (5 x 16= 80 Marks)								
11.	(a) Discuss and analyze the generation and detection of VSB. CO1 U Or	(16)						
	(b) Explain with suitable diagrams the generation of FM using CO1-U	(16)						

indirect Method.

12. (a) A signal of bandwidth 3.5kHz is sampled, quantized and coded CO3-App (16) by a PCM system. The coded signal is then transmitted over a transmission channel of supporting a transmission rate 50 kbits/sec. Calculate the maximum signal to noise ratio that can be obtained by this system. The signal input has peak to peak values of 4volts and rms value of 0.2V.

Or

- (b) A television signal with a bandwidth of 4.2MHz is transmitted CO3-App using binary PCM. the number of Quantization level is 512 Calculate
 - i) Code word length (4)
 - ii) Transmission Bandwidth (4)
 - iii) Final bit rate (4)
 - iv) What is the Minimum sampling rate.(4)
- 13. (a) Discuss the operation of QPSK transmitter and receiver with CO1-U (16) neat diagram draw its waveform and constellation diagram.

Or

- (b) Discuss the operation of FSK transmitter and receiver with neat CO1- U diagram draw its waveform and constellation diagram. (16)
- 14. (a) The generator Matrix for a (6,3) block code is given below . find CO3- An all code vectors of this code.

$$G = \begin{bmatrix} 1 & 0 & 0:0 & 1 & 1 \\ 0 & 1 & 0:1 & 0 & 1 \\ 0 & 0 & 1:1 & 1 & 0 \end{bmatrix}$$

- i) Find the parity check matrix.
- ii) Find Minimum weight of this code.

Or

- (b) The Message 1001001010 is to be transmitted in a cyclic code CO3- An with a generator Polynomial $g(x) = x^2 + 1$. (16)
 - i) How Many check bits does the encoded message contain.
 - ii) Obtain the transmitted code word.
 - iii) Draw the encoding arrangement to obtain remainder bits.
 - iv) After the received word is clocked into the decoder input, what should be the content of the register stores?

- 15. (a) Explain the principle of DS Spread spectrum technique. CO1- U (16)
 Or
 - (b) Describe the block diagram of DS SS binary PSK spread CO1-U (16) spectrum system.