/	•	
	•	
1	_	

D M						
Reg. No.:						
O						

Question Paper Code: R2M11

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

	CS	E (Artificial Intelligen	ce and Machine Learnir	ng)			
	R21UMA211-FOUI	•	IAL DIFFERENTIAL F ANALYSIS	EQUATIONS AND			
		(Regulation	ons R2021)				
Dur	ation: Three hours		Maximum: 100 Marks				
		Answer AL	L Questions				
		PART A - (10	x 1 = 10 Marks)				
1.	The root mean square	e value of $f(x) = x$ in (0, <i>l</i>) is	CO1-App			
	(a) l	(b) 1/2	(c) $1/\sqrt{3}$	(d) 2 <i>l</i>			
2.	If $f(-x) = -f(x)$, the (a) Odd Function	en f(x) is said to be an (b) Even Function	(c) Periodic function	CO6- U (d) Self Reciprocal			
3.	The complimentary f	Function of $(D^2 - 2DI)$	$D' + D'^2)z = 0$ is	CO2-App			
	(a) $f_1(y+x) + f_2(y-x)$		(b) $f_1(y+x) + x f_2(y+x)$)			
	(c) $f_1(y+x) + x^2 f_2(y+x)$	+x)	(d) None of these				
4.	The subsidiary equat	ear equation is	CO6 - U				
	(a) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	(b) $\frac{dx}{P} + \frac{dy}{Q} + \frac{dz}{R}$	(c) $\frac{dx}{P} - \frac{dy}{Q} - \frac{dz}{R}$	(d) $Pp + Qq = R$			
5.	Classify the equation	$u_{xx} + u_{yy} = 0$ is		CO3-App			
	(a) parabolic	(b) hyperbolic	(c) elliptic	(d) cyclic			
6.	In a one dimensional	wave equation, $c^2 = $.	CO6- U			
	(a) T^2/m^2	(b) T/m	(c) T/m^2	(d) T^2/m			
7.	The real and imagina	ry parts of an analytic	function are	CO6- U			
	(a) Harmonic		(b) orthogonal				
	(c) satisfies Laplace 6	equation	(d) All the above are true				

The mapping $w = z^2$ is not conformal at CO6-U 8. (a) 0 (b) -1(c) 1 (d) 2Simple pole is a pole of order CO6- U (a) 1 (b) 2 (c) 3 (d) 4CO6- U The value of $\int_{0}^{\infty} \frac{dz}{z^2} = 0$ where C is _____ (b) |z-1|=2 (c) |z|=2(d) |z-2|=1(a) |z| = 1PART - B (5 x 2= 10 Marks) 11. Find a_0 and a_n in the Fourier series of f(x) = x in $(0,2\pi)$ CO1 App Form the PDE by eliminating the constant f from $z = f(x^2 - y^2)$ CO₂ App The ends A and B of a rod 1 cm long have the temperatures $40^{\circ}C$ and $90^{\circ}C$ 13 CO₃ App

until steady state condition prevails. Find the subsequent temperature distribution in the rod.

14. Find the constant 'a' so that $u(x, y) = ax^2 - y^2 + xy$ is harmonic CO₄ App

15. Expand $\frac{1}{z(z-1)}$ as a Laurent series about z=0 in the annulus 0 < |z| < 1. CO₅ App

16. (a) (i) Express $f(x) = (\pi - x)^2$ as a Fourier series of period 2π in CO1- App (8) the interval $0 < x < 2\pi$.

(ii) The table of values of the function y = f(x) is given below:

X:	0	T/6	T/3	T/2	2T/3	5T/6	T
y:	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Find a Fourier series upto the third harmonic to represent f(x) in terms of x

Or

(i) Compute first two harmonics of the Fourier series for the CO1-App (b) (8) following data.

X	0	2	4	6	8	10
у	1.87	1.36	1.14	1.05	-0.83	-0.36

(ii) Find the Half range cosine series for f(x) = x in $(0, \pi)$ CO1- App (8)

CO1- App

(8)

17. (a) (i) Solve $(D^2 - DD' - 2D'^2)Z = e^{3x+4y} + \cos(x+y)$ CO2- App (8)

(ii) Solve $x(z^2 - y^2) p + y(x^2 - z^2) q = z(y^2 - x^2)$ CO2- App (8)

Or

(b) (i) Solve $z = px + qy + p^2 - q^2$ CO2- App (8)

- (ii) Form a PDE by eliminating arbitrary functions from CO2-App (8) $\varphi(x^2 + y^2 + z^2, x + y + z) = 0$.
- 18. (a) A bar of 10cm long with insulated sides has its ends A and B kept CO3- App (16) at 50° c and 100° c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 90° c and at the same instant B is lower to 60° c and maintained thereafter. Find the subsequent temperature distribution in the bar.

Or

- (b) If a string of length 'l' is initially at rest in its equilibrium position CO3- App (16) and each of its points is given velocity, $\frac{\partial y}{\partial t} = V_0 \sin^3 \frac{\pi x}{t}$, 0<x<1, Determine the displacement function y(x,t).
- 19. (a) (i) Find the image of |z 3i| = 3 under the transformation CO4- App (8) $w = \frac{1}{z}$
 - (ii) If f(z) = u +iv is a regular function of z in a domain D the CO4-App (8) following relation hold in D. $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$ Or
 - (b) (i) Find the bilinear transformation which maps the points 1, i, -1 CO4- App on to 0, 1, ∞ . Prove that the transformation maps the interior of the unit circle of Z-plane onto upper half of the w-plane
 - (ii) Find the image of infinite strips

 CO4- App (8)
 - $(i)\frac{1}{4} < y < \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$

20. (a) (i) Evaluate using Cauchy's Residue theorem for

- CO5- App (8)
- $f(z) = \int_{C} \frac{3z^2 + z 1}{(z^2 1)(z 3)} dz$, where 'C' is the circle |z| = 2.
- (ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the region
- CO5- App (8)

1 < |z| < 3.

Or

(b) (i) Evaluate

- CO5- App (8)
- $f(z) = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)(z-2)} dz$ by using Cauchy Residue theorem

where C is |z| = 3.

(ii) Expand $\frac{1}{z(z-1)}$ as Laurent's series valid in the regions CO5-App (8) 0 < |z| < 1