Question Paper Code:R2E05

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Artificial Intelligence and Data Science

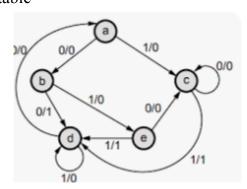
R21UAD205- DIGITAL LOGIC AND DESIGN

(Regulations R2021)

(Common to CSE(AIML) Engineering branches)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions


PART A - $(10 \times 2 = 20 \text{ Marks})$

		PART A - $(10 \times 2 = 20 \text{ Marks})$			
1.	Find	Find 2's complement:1101110101		CO2-App	
2.	To Perform BCD Addition for given number: 788 and 879			O2-App	
3.	Define half adder and full adder			O1- U	
4.	Write down the applications of Multiplexer			O1- U	
5.	Deri	ve the characteristic equation of a D flip flop.	of a D flip flop. CO1- U		
6.	Explain D flip-flop			O1- U	
7.	What are the types of hazards?			CO1- U	
8.	What is the need of state reduction in sequential circuit design?			O1- U	
9.	Define ROM		C	CO1- U	
10.	Explain PLA		C	CO1- U	
PART – B (5 x 16= 80 Marks)					
11.	(a)	Reduce the following 4 variable function to its minimum sum of products form:	CO2-App	(16)	
		$Y = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BCD + \overline{A}BC\overline{D} + AB\overline{C}D + AB\overline{C}D + ABCD + A\overline{B}CD$			
Or					
	(b)	Simplify the Boolean expression by using a QuineMcCluskey method	CO2-App	(16)	
		$F(A,B,C,D) = \sum m(0,2,3,6,7,8,10,12,13)$			

- 12. (a) (i) Differentiate between half adder and full adder? CO1- U (8)
 - (ii) With an aid of block diagram clearly distinguish between a CO1-U (8) decoder and encoder.

Or

- (b) What is decoder? Draw the block diagram and truth table for 2 to 4 CO1- U decoder. (16)
- 13. (a) Design a synchronous counter to count in the following CO2-App (16) Sequences 0,1,2,3,4,5,6, Using JK flip flop.
 - (b) Using SR flip flops, design a parallel counter which counts in the CO2-App (16) sequence 000,111,101,110,001,010,000
- 14. (a) Design an asynchronous sequential circuit with inputs x1 and x2 CO2-App (16) and one output z. Initially and at any time if both the inputs are 1, output is equal to 0. When x1 or x2 becomes 1, z becomes 1. When second input also becomes 0, z=1 the output stays at 0 until circuit goes back to initial state
 - (b) Design a sequential circuit involves the representation of CO2-App (16) sequential circuit models. It includes a state diagram, state table, reduced state table

- 15. (a) Explain in detail about Error correction with an example? CO1- U (16)
 - (b) Explain in detail about Static and dynamic ROM with neat CO1-U (16) diagram?