Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U6E01

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Sixth Semester

Artificial Intelligence & Data Science

21UAD601- INTELLIGENT COMPUTER VISION

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$ 1. Find the no of bits required to store a 256*256 image with 32 gray levels CO2- App 2. Let the RGB values of a point is given as (0.2,0.4, 0.6). Find the HSV CO2- App equivalent of RGB. 3. What is global, Local and dynamic or adaptive threshold? CO1- U 4. Explain Region Splitting and merging CO1- U 5. What is string matching in object recognition? CO1- U 6. Define optimum statistical classifiers. CO1- U What are the main applications of 3D object reconstruction? 7. CO1- U 8. Define photogrammetry CO1- U 9. What is the significance of anomaly detection in video surveillance? CO1- U

CO1-U

the erosion and dilation process.

10.

What is the importance of sensor fusion in autonomous vehicles?

- (b) Let the image CO2- App (16) $f(x,y)\begin{bmatrix} 1 & 3 & 5 \\ 4 & 4 & 3 \\ 5 & 2 & 2 \end{bmatrix}$ be and the reconstructed image be $f(x, y) = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}$ What is MSE, SNR and PSNR for an 8-bit image?
- 12. (a) Explain texture Analysis techniques of Gabor Filters, Haralick CO1- U (16) Features, Local Binary Patterns and its applications.

Or

What would you do if the reference image is not given?

- (b) Explain motion in Segmentation techniques of Lucas-Kanade CO1- U (16) Method, Horn-Schunck Method and compare their effectiveness.
- 13. (a) Given two strings A="GATTACA" and B="GCATGCU", use the CO2- App (16) Needleman-Wunsch algorithm to compute the alignment score with a match score of +1, a mismatch penalty of -1, and a gap penalty of -2.

Or

- (b) Apply neural networks to solve an object recognition problem for CO2- App (16) train a CNN for recognizing objects like cars or animals, with input layers, hidden layers, and output classes.
- 14. (a) Explain feature matching in the context of structure from motion. CO1- U (16) Or
 - (b) Explain camera pose estimation and its significance in structure CO1- U (16) from motion
- 15. (a) Demonstrate the concept of template matching in object CO3- Ana (16) recognition with an example.

Or

(b) Highlight the difference between exhaustive search and efficient CO3- Ana (16) search strategies in template matching and show how do efficient search algorithms such as pyramid matching or image pyramids improve computational efficiency?