Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: R4E04

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Artificial Intelligence and Data Science

R21UAD404- DATA WAREHOUSING AND DATA MINING

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

1.	Apply the OLAP Operations for the dimension location (Tamilnadu, Karnataka,	CO2-App
	and Kerala)	
2.	List down the major tasks involved in data cleaning process	CO1-U

3. Specify client/server model for our AI LAB with proper description. CO2-App

4. Suggest a way to improve picking efficiency in a warehouse with high CO2-App diversity.

5. List down the major tasks involved in data cleaning process. CO2-App

6. Calculate Euclidean distance for (1,5) & (8,2). CO2-App

7. List the two interesting measures of an association rule.

8. Define constraint-Based Association Mining CO1-U

9. Define OLAP operation. CO1-U

10. What is meant by tuning a data warehousing?

PART – B (5 x 16= 80 Marks)

11. (a) Explain in detail about the Data Warehouse Components with CO1-U (16) neat diagram.

Or

- (b) Explain about the data warehouse schema and its types in detail. CO1-U (16)
- 12. (a) Apply a business case where centralized warehousing could CO2-App (16) reduce costs and improve efficiency.

Or

- (b) Apply a scenario where a single server in a data warehouse setup CO2-App (16) becomes a bottleneck. Suggest a solution using a client/server model.
- 13. (a) Describe in detail about Concept hierarchies with example. CO1- U (16)
 - (b) Explain in detail about the decision tree with example. CO1- U (16)
- 14. (a) Make use of Apriori algorithm to find the support and confidence CO2-App (16) from the following transaction table.

TID	ITEMSETS
T1	А, В
T2	B, D
T3	В, С
T4	A, B, D
T5	A, C
T6	В, С
T7	A, C
T8	A, B, C, E
Т9	A, B, C

Given: Minimum Support= 2, Minimum Confidence= 50% Or

(b) Apply FP growth for discovering frequent item sets for mining association rules of the following table. Min.Sup = 2, Min Conf=50%.

CO2-App (16)

 0,0,0.	
Trans ID	Items Purchased
101	milk, bread,eggs
102	milk, juice
103	juice,butter
104	milk,bread,eggs
105	coffee,eggs
106	coffee
107	coffee , juice
108	milk, read,cookies,eggs
109	cookies, butter
110	milk, bread

15. (a) Apply the OLAP Operational tools / multi-dimensional data tools CO3-Ana (16) for a University or Hospital or Enterprise with necessary description.

Or

(b) A news website wants to analyze user behavior to recommend CO3-Ana (16) personalized content. Propose a web mining framework that extracts data from user logs, performs analysis, and generates recommendations.