A Reg. No. :												
--------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U6A02

B.E. / B.Tech. DEGREE EXAMINATION, APRIL/MAY 2025

Sixth Semester

Agricultural Engineering

		Agricultura	i Engineering				
	21UAC	G602 – DESIGN OF B	BASIC MACHINE ELEM	IENTS			
		(Regula	tions 2021)				
Dura	ation: Three hours			Maximum: 1	00 Marks		
		Answer A	LL Questions				
		PART A - (10	x 1 = 10 Marks)				
1.	In cyclic loading, stres	n cyclic loading, stress concentration is more serious in					
	(a) brittle materials		(b) ductile materi	als			
	(c) brittle as well as du	actile materials	(d) elastic materia	als			
2.	The ratio of the ultim	he ratio of the ultimate stress to the design stress is known as					
	(a) Elastic limit	(b) Strain	(c) Factor of safety	y (d) Bulk	modulus		
3.	If the diameter of a transmitted will be	solid shaft is increa	ased two times, the tor	que	CO1- U		
	(a) two times	(b) four times	(c) eight times	(d) sixtee	n times		
4.		le material is loaded in excess of a certain value, a gradual CO2-Agengation takes place with time. this phenomenon is known as					
	(a) creep	(b) fatigue	(c) stress concent	ration (d) ov	erstrain		
5.			e, the distance from the co e in terms of dia of rivet		CO2-App		
	(a) d	(b) 1.25 d	(c) 1.5 d	(d) 2 d			
6.	If shearing stress in no be equal to	at is half the tensile st	ress in a bolt, then nut le	ngth should	CO2-App		
	(a) Diameter of bolt	(b) .75 X diameter	(c) 1.5 X diameter (d	d) None of the	above		
7.	The springs made in the	ne form of a cone disk	to carry a high compress:	ive force is	CO1- U		
	(a) Helical	(b) Belleville	(c) Leaf	(d) none	of these		

8.	The longest leaf in Semi-elliptic leaf spring is known as						
	(a) Chief leaf (b) Master leaf (c) Major leaf (af (d)High					
9.	What is the most important feature of lubrication that determines the life bearing?	e of a	CO1- U				
	(a) viscosity (b) grade of grease (c) E.P. additives (d)v	iscosity	index				
10.	What two items are used to determine the proper oil viscosity for a bearing?		CO1- U				
	(a) bearing width and bearing speed (b) bearing speed and bearing outside d						
	(c) bearing width and bearing bore (d) bearing speed and bearing pit	tch dian	neter				
	PART - B (5 x 2= 10 Marks)						
11.	Differentiate the stress distribution in a bar subjected to axial force and I subjected to bending.	beam (CO1-U				
12.	A line shaft rotating at 200rpm is to transmit 20kW. It may be assumed to be made CO2-App of mild steel with an allowable shear stress of 42MPa. Determine the diameter of the shaft, neglecting the bending moment on the shaft.						
13.	Explain about the ways to produce bolts of uniform strength.						
14.	When two concentric springs of stiffness 200 N/mm respectively are subjected to C an axial load of 1500 N, what will be the deflection of each spring?						
15.	Explain the term dynamic load carrying capacities of rolling contact bearing.	(CO1-U				

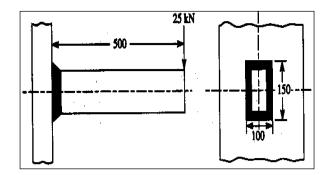
$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) A shaft of 200mm length is cantilever rod of circular section. It is CO2-App (16)subjected to a cyclic transverse load that varies from -50 to 150 KN. Determine the diameter of the shaft assuming a factor of safety of 2, size correction factor of 0.85 and surface correction factor of 0.9. The material properties are ultimate strength = 550MPa; yield strength = 320MPa and endurance limit = 275MPa. Theoretical stress factor = 1.4, Notch sensitivity factor = 0.9.

Or

(b) A circular bar of 500 mm length is supported freely at its two ends. It CO2-App (16)is acted up on by a central concentrated cyclic load having a minimum value of 20 kN and a maximum value of 50 kN. Determine the diameter of bar by taking a factor of safety of 1.5, size effect of 0.85, surface finish factor of 0.9. The material properties of bar are given by: ultimate strength of 650

MPa, yield strength of 500 MPa and endurance strength of 350 MPa.


17. (a) A shaft supported at the ends in ball bearings carries a straight tooth CO3-App spur gear at its mid span and is to transmit 7.5KW at 300rpm. The pitch circle diameter of the gear is 150mm. The distance between the centre line of the bearings and gear are 100mm each. If the shaft is made of steel and the allowable shear stress is 45MPa, determine the diameter of the shaft. Show in a sketch how the gear will be mounted on the shaft, and also indicates the ends where the bearings will be mounted? The pressure angle of the gear may be taken as 20.

Or

- (b) Design a clamp coupling to transmit 30KW at 100rpm. The allowable CO3-App shear stress for the shaft and key is 40 MPa and the number of bolts connecting the two halves are six. The permissible tensile stress for the bolts is 70 MPa. The coefficient of friction between the muff and the shaft surface may be taken as 0.3.
- 18. (a) Design a knuckle joint to transmit 100 kN. The design stresses may be CO3-App (16) taken as 55 MPa in tension, 40 MPa in shear and 120 MPa in compression.

Or

(b) A rectangular cross-section bar is welded to a support by means of CO3-App fillet welds as shown in Fig. Determine the size of the welds, if the permissible shear stress in the weld is limited to 75 MPa. All dimensions in mm.

19. (a) A railway wagon moving at a velocity of 1.5m/s is brought to rest by a CO4-App bumper consisting of two helical springs arranged in parallel. The mass of the wagon is 1500kg. The springs are compressed by 150mm in bringing the wagon to rest. The spring index can be taken as 6. The springs are made of oil hardened and tempered steel wire with ultimate tensile strength of 1250 N/mm² and modulus of rigidity 81370 N/mm². The permissible shear stress for the spring wire can be taken as 50% of the ultimate tensile strength. Design the spring.

Or

- (b) A railway wagon moving at a velocity of 4.5m/s is brought to rest by a CO4-App bumper consisting of two helical springs arranged in parallel. The mass of the wagon is 1800kg. The springs are compressed by 190mm in bringing the wagon to rest. The spring index can be taken as 7. The springs are made of oil hardened and tempered steel wire with ultimate tensile strength of 1450 N/mm2 and modulus of rigidity 81870 N/mm2. The permissible shear stress for the spring wire can be taken as 60% of the ultimate tensile strength. Design the spring.
- 20. (a) Analyze the design process, in which the sliding action is along the CO3-App (16) circumference or arc of a circle and carrying radial loads.

(b) Design and analyze the journal bearing for a centrifugal pump from CO3-App the following data: Load on the journal = 10 000 N; Speed of the journal = 700 r.p.m.; Type of oil is SAE 10, for which the absolute viscosity at 55°C = 0.017 kg / m-s; Ambient temperature of oil = 15.5°C; Maximum bearing pressure for the pump = 2.5 N / mm2. Calculate also mass of the lubricating oil required for artificial cooling, if rise of temperature of oil be limited to 10°C. Heat dissipation coefficient = 1232 W/m2/°C.