A	Reg. No. :						
1.1	1108.1101.						

Question Paper Code: R4A02

B.E. / B.Tech. DEGREE EXAMINATION, APR/MAY 2025

Fourth Semester

Agricultural Engineering

R21UAG402 – FUNDAMENTALS OF THERMODYNAMICS FOR AGRICULTURE ENGINEERING

		EN	IGINEERING				
		(Reg	culation- R2021)				
Dur	ation: Three hours		M	aximum: 100 Mar	ks		
		Answe	er ALL Questions				
		PART A -	$-(10 \times 1 = 10 \text{ Marks})$				
1.		ne for the constant ³ at 1 atmospheric pre	pressure process if the essure	e volume	CO2-App		
	a) 40 kJ	b) 20 k	c) 10 kJ	d) 30 kJ	30 kJ		
2.	First law of thermo	odynamics states that			CO1-U		
	a) mass	b) energy	c) enthalpy	d) entropy			
3.	A carnot engine re is 59%. Find the he	of work output	y of the engine	CO2-App			
	(a) 1.695	(b) 0	(c) 1.23	(d) 1.	.3		
4.	The best example of heat engine operates refrigerator is CO1						
	(a) car	(b) bike	(c) source	(d) sin	nk		
5.	The heat does not	change the temperatur	re during the phase change	is called	CO1-U		
	(a) sensible heat	(b) latent heat	(c) adiabatic heat	(d) va	riable heat		
6.	Find the h _f value of	5° C			CO2-App		
	(a) 30 kJ/ kg	(b) 21 kJ/ kg	(c) 15 kJ/ kg	(d) 10	kJ/ kg		
7.	Gibbs function star		CO1-U				
	(a) $G = h - TS$	(b) $H= u-TS$	(c) $G = u + TS$	(d) $H= u+ TS$			

8.	Cha	rles law states that					(CO1-U		
	(a)	να S	(b) vα R	(c)	να Ρ		(d) va T			
9.	Which branch of science deals with properties of air						CO1-U			
	(a)	geometry	(b) audiometry	(c)	physhror	netry	(d) trigonor	netry		
10.	The	wet bulb depression	is zero, when relati	ive humidi	ty is equa	l to	CO1-U			
	(a)	100%	(b) 0%		(c) 60)%	(d) 20%			
			PART – B (5	$5 \times 2 = 10 \text{ N}$	Marks)					
11.	Differ closed and open system							CO1-U		
12.	State Kelvin Planck Statement							CO1-U		
13.	What is saturation temperature and saturation pressure?							CO1-U		
14.	. Define Joule – Thomson Co-efficient							CO1-U		
15.	5. What is the difference between air conditioning and refrigeration?						CO1-U			
			PART – C	$(5 \times 16 = 8)$	30 Marks)					
16.	(a)	Derive the expression	on for adiabatic pro	$pcess pv^{\gamma} =$	= C.		CO2-App	(16)		
			Or							
	(b)	A turbine operates following state pre 2785 kJ/kg, velocit turbine at the follow velocity= 100 m/s& rate of 0.29 kJ/s wifind the power outp	ssure= 1.2 MPa, to y is 33.3 m/s. & el ving state, pressure to elevation= 0 m, ho ith the steam flow	emperature levation = = 20 kPa, c eat loss to through th	= 188° (3 m, stea enthalpy = the surrou	C, enthalpy = am leaves the = 2512 kJ/kg, andings at the	CO2-App	(16)		
17.	(a)	A reversible hear	t engine operate	s between	n two 1	reservoirs at	CO2-App	(16)		

17. (a) A reversible heat engine operates between two reservoirs at CO2-Ap temperature of 600°C and 40°C. The Engine drives a reversible refrigerator which operates between reservoirs at temperature of 35°C and – 18°C. The heat transfer to the heat engine is 1900KJ and network output of combined engine refrigerator plant is 350KJ. Evaluate the heat transfer to the refrigerator and the net heat transfer to the reservoir at 35°C.

Or

- (b) Two Carnot engines A and B are operated in series. Engine A receives CO2-App (16) heat from a reservoir at 870 K and rejects heat to a reservoir heat to reservoir at temperature T. Engine B receives heat rejected by engine A and in turn rejects it to a reservoir at 300 K. calculate the intermediate temperature for the following cases
 - 1. The workout of the two engines are equal
 - 2. The efficiencies of the two engines are equal
- 18. (a) Steam initially 1.5Mpa, 300°C expands reversibly and adiabatically in CO2-App (16) a steam turbine at 40°C. Determine the ideal work output of the turbine per kg of steam.

Or

- (b) A simple Rankine cycle works between pressures 28 bar and 0.06 bar, CO2-App the initial condition of steam being dry saturated. Calculate the cycle efficiency, work ratio and specific steam consumption.
- 19. (a) Analyze the 10 kmol of methane gas is stored in 5 m³ container at CO3-Ana (16) 300K.Calculate the pressure by
 - i. Perfect gas equation
 - ii. Vander walls equation

Use the following constants a=228.296 kpa.m6/kmol2 and b=0.043 m3/kmol for Van der Waals equation.

Or

- (b) Analyze and derive the Clausius-Clapeyron equation, which describes CO3-Ana (16) the relationship between pressure and temperature during a phase change.
- 20. (a) Design the sling psychrometer, the humidity ratio of atmospheric air at CO4-D 28°C dry bulb temperature and 760 mm of mercury is 0.016 kg / kg of dry air. Determine: 1. partial pressure of Water vapour; 2.relative humidity; 3. dew point temperature; 4. specific enthalpy; and 5.vapour density.

Or

(b) Design the air conditioning of a public hall:

Outdoor conditions = 40°C DBT, 20°C WBT

Required comfort conditions = 20°C DBT, 50% RH

Seating capacity of hall = 1000

Amount of outdoor air supplied = 0.3 m3/min/person

If the required condition is achieved first by adiabatic humidifying and then cooling, find: 1. The capacity of the cooling coil and surface temperature of the coil if the by-pass factor is 0.25; and 2. The capacity

of the humidifier and its efficiency.

(16)