A
4

Reg.	No.
ILUS.	110.

Question Paper Code: U3M21

	B.	E./B.Tech. DEGREE B	EXAMINATION, AP	RIL 2024	
		Thire	d Semester		
		Mechanic	al Engineering		
21	UMA321- PROBA	BILITY, STATISTICS	AND PARTIAL DII	FFERENTIAL EQUATION	ONS
		(Regul	ations 2021)		
Dur	ation: Three hours			Maximum: 100 Ma	rks
		Answer	All Questions		
		PART A - (10x 1 = 10 Marks		
1.	The degrees of fre	edom in t-tests is		CO	06- U
	(a) n-1	(b)n-2	(c) n-3	(d)n-4	
2.	Chi-square test is	very popularly known	as a test of	CO	06- U
	(a) Independent of	fattributes	(b) t- test		
	(c) F-test		(d) goodness of	fit	
3.	Latin square desig	gn is a		CO	6- U
	(a) One way	(b) Two way	(c) Three way	(d) None of these	3
4.	Choose the correc	tion factor		CO)6- U
	(a) T^2N^2	(b)T/N	$(c)T^2/N$	(d) 0	
5.	The limiting form	a Binomial distribution	n is	CO	06- U
	(a) Geometric	(b) Poisson	(c) Normal	(d) None of the above	
6.	If X and Yare inde	ependent random variat	oles then Cov(X,Y):	is CO3	- App
	(a) 0	(b) 1	(c) -1	(d) ∞	
7.	The particular inte	egral of $(D^2 - 4DD' + 3D)$	$(z)^{2}$) $z = e^{x+y}$ is	CO3-	App
	(a) $\frac{xe^{x+y}}{2}$	(b) $-\frac{xe^{x+y}}{2}$	$(c)\frac{x^2e^{x+y}}{2}$	$(d) \frac{-x^2 e^{x+y}}{2}$	

The general solution of $(D^2 - 8DD' + 12D'^2)$ z = 0 is 8.

CO4- App

- (a) $f_1(y+2x) + f_2(y+6x)$
- (b) $f_1(y+2x) + f_2(y-6x)$
- (c) $f_1(y-2x) + f_2(y-6x)$

(d) $f_1(y+2x) + f_2(y-6x)$

9. Classify the equation $u_{xx}+u_{yy}=0$ is _____

CO6- U

- (a) parabolic
- (b) hyperbolic
- (c) elliptic
- (d) cyclic

10. $Au_{xx}+Bu_{xy}+Cu_{yy} = f(x, y)$ is parabolic if_____.

CO5-U

- (a) B^2 -4AC<0 (b) B^2 -4AC=0 (c) B^2 -4AC>0 (d) B^2 -4AC \neq 0

PART - B (5 x 2= 10Marks)

11. Write the conditions for the application of Chi-square Test

CO1- U

- 12. For a one way classification on 12 observations involving 3 treatments the CO2- App sum of squares of treatment and sum of squares of total are 8 and 36 respectively, compute the value of the F – ratio.
- 13. A continuous random variable has the probability density function is given by CO3- App f(x) = Kx (1 - x), 0 < x < 1, Compute the value of the constant 'K'.
- 14. Compute the complete integral of p q = k

CO4- App

15. Classify $8u_{xx} - 5u_{xy} + u_{yy} = 0$

CO5- App

(8)

(8)

- 16. (a) (i) The theory predicts the population of beans in the four groups CO1-Ana A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?
 - (ii) In one sample of 10 observations the sum of the squares of the CO1-Ana deviations of the sample values from the sample mean was 120 and another sample of 12 observations it was 314, Test whether the difference significant at 5% level of significance.

Or

(b) (i) Two horses A and B were tested according to time (in seconds) CO1 -Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Identify the sampling distribution, test whether horse A is running faster than B at 5% level

(ii) In one sample of 8 observations the sum of the squares of the	CO1 -Ana	(8)
deviations of the sample values from the sample mean was 84.4		
and another sample of 10 observations it was 102.6, Test whether		
the difference significant at 5% level of significance.		

17. (a) Analyze the following of Latin square design experiment. CO2 -Ana (16)

A (12)	D (20)	C (16)	B (10)
D (18)	A (14)	B (11)	C (14)
B (12)	C (15)	D (19)	A (13)
C (16)	B (11)	A (15)	D (20)

Or

(b) A completely randomized design experiment with 10 plots and 3 CO2 -Ana treatments gave the following results:

Plot No	1	2	3	4	5	6	7	8	9	10
Treatment	A	В	С	A	С	C	A	В	A	В
Yield	5	4	3	7	5	1	3	4	1	7

18. (a) (i) Obtain the Correlation coefficient for the following heights (in CO3-App inches) of fathers X and their sons Y.

X								72
Y	67	68	65	68	72	72	69	71

(ii) The number of monthly breakdowns of a computer is a R.V. CO3-App having a Poisson distribution with mean equal to 1.8. Find the Probability that his computer will function for a month (a) Without a breakdown (b) With only one breakdown (c) With at least one breakdown.

Or

- (b) (i) In a large consignment of electric bulbs 10 % are defective. A CO3-App random sample 20 bulbs are taken for inspection. Find the probability that (i) all are good bulbs (ii) exactly three defective bulbs
 - (ii) Using the probability mass function of exponential distribution CO3-App (8), Compute the moment generating function and hence find mean and variance

(8)

- 19. (a) (i) Solve $(D^2 DD^1 2D^{1^2})z = e^{3x+4y} + \cos(x+y)$ CO4-App (8)
 - (ii) Solve $x(z^2 y^2) p + y(x^2 z^2) q = z(y^2 x^2)$ CO4-App (8)

- (b) (i) Solve $Z = px + qy + \sqrt{pq}$ CO4 -App (8)
 - (ii) Form a P.D.E by eliminating arbitrary functions from CO4-App (8) $f(x^2 + y^2 + z^2, x + y + z)$
- 20. (a) A bar of 10cm long with insulated sides has its ends A and B kept CO5- App (16)at 0° c and 100° c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 20°c and at the same instant B is lower to 80°c and maintained thereafter. Find the subsequent temperature distribution in the bar.

(b) A String is stretched and fastened to two points 1 apart . Motion is CO5- App (16)started by displacing the Velocity $\lambda (lx-x^2)$ from which it is released at t=0. Find the displacement of any point at a distance 'x' at any time 't'.