A	
Δ	

Reg. No.:					

Question Paper Code: 93703

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

Third Semester

Mechanical Engineering

			\mathcal{C}				
	19	9UME303– ENGINE	EERING THERMODYN	IAMICS			
		(Re	gulation 2019)				
Dur	ation: Three hours			Maximum: 10	00 Marks		
		Answe	er ALL Questions				
		PART A -	(10 x 1 = 10 Marks)				
1.	Mass Transfer ca	nnot takes place in			CO1- U		
	(a) open system	(b) closed system	(c) Isolated system	(d) None of the al	oove		
2.	Which one is appl	lication of SFEE?			CO1- U		
	(a) IC Engines	(b) Evaporator	(c) Condenser	(d) Both b & c			
3.	The efficiency of	carnot cycle depends	s upon		CO2- U		
	(a) temperature lin	mits	(b) pressure rati	(b) pressure ratio			
	(c) volume compr	ression ratio	(d) cut-off ratio	and compression ra	atio		
4.	. What is the relation between COP of heat pump and refrigerator				CO4- U		
	(a) COP of pump	= COP of refrigerator	or-1 (b) COP of pump	= COP of refrigera	ntor+1		
	(c) COP of pump	= COP of refrigerator	or-2 (d) COP of pump	= COP of refrigera	ntor+2		
5.	Pure substance ex	ample is			CO1- U		
	(a) H2 (b)	Table Salt	(c) Gold	(d) All the abo	ove		
6.	What is the actual	turbine inlet temper	rature in Rankine cycle?		CO4- U		
	(a) 700^{0} C	(b) 800° C	(c) 550^{0} C	(d) 1150° C			
7.	Which of the foll	owing relation is cor	rect?		CO5- U		
	(a) dU=TdS-pdV		(b) dH=TdS+Vdp				
	(c) dG=Vdp-SdT		(d) all of the above	ve .			

8.	Max	xwell's equation	ons consists of	equations.			CO5- U
	(a) 1	four	(b) three	(c) two	(d) on	e	
9.	In se	ensible heating	or cooling				CO1- U
	(a) v	work done rem	ains constant	(b) dry bulb tempera	ture or air rema	ains constar	nt
	(c) l	both of the men	ntioned	(d) none of the above	e		
10		e wet bulb to istened bulb.	emperature is the	e temperature	recorded by		CO1- U
	(a) l	lowest		(b) highest			
	(c) a	atmospheric		(d) none of the	ne mentioned		
			PART	$-B (5 \times 2 = 10 \text{ Marks})$			
11	Stat	e First Law of	Thermodynamics	s for closed system.			CO3- U
12	State Kelvin Planck's second law of thermodynamic.						CO4- U
13	What do you understand by pure substance? Give Examples						CO1- U
14	What is Clausius Clapeyron equation?						
15	5 Define Relative Humidity						CO6- U
			PAR	T - C (5 x 16= 80 Mai	rks)		
16	(a)	two times of Calculate the Change in Ex	ime process, so the finitial pressure. The final temperature is the final temperature.	is heated in a reversion that pressure of oxygen. The initial temperature, Change in integransfer and final temperature, Cy/KgK	n is increased ure is 200 C ernal Energy,	CO3-App	(16)
	(b)	steam,at inlet and the velo KJ/Kg.The n from it. (i) F is 0.1 m ² and mass flow ra	to certain nozzle ocity is 60 m/s a ozzle is horizont ind the velocity a d specific volume	easing velocity of a steet the enthalpy of fluid in at discharge end enthal and there is negligate exist from nozzle (ii at at inlet is 0.187 m ³) if it is volume at exit is	is 3000KJ/Kg alpy is 2762 ible heat loss) If inlet area /Kg. Find the	CO3-Ana	(16)

17 (a) A Heat engine supply 19 KW of heat from 565K substance and CO4-Ana reject heat to 282.5K to reservoir . which of the following engine is reversible, irreversible and impossible Engine CASE 1- If 14.0833KW of heat is rejected CASE 2- If 4.75 KW of heat is rejected CASE 3- If 9.5 KW of heat is rejected, By using carnot and Clausius inequality method

Or

- (b) A Reversible Heat Engine operates between two reservoirs at CO4-App temperature of 600^{0} C and 40^{0} C. The engine drives a reversible refrigerator which operates between reservoir at a temperature of 40^{0} C and 20^{0} C. The heat to the heat engine is 2000 KJ and the net work output of the combined engine and refrigerator plant is 360 KJ. Evaluate the heat transfer to the refrigerator and net heat transfer to the reservoir at 40^{0} C
- 18 (a) Discuss the different phase change zones of T-S Diagram for CO1-U water when the temperature rises from solid phase to superheated phase. (16)

Or

- (b) A Vessel of volume 0.04 m³ contains a mixture of saturated water CO1-App and saturated steam at a temperature of 250⁰ C. The mass of liquid present is 9 Kg. Find the Pressure, Mass, Specific Volume, Specific Entropy, Specific Enthalpy and Specific Internal Energy
- 19 (a) Derive Tds equation when (i) T and V independent (ii) T and P CO5-U (16) independent.

Or

- (b) Explain the Joule Thomson coefficient with the help of T-p CO5-U diagram and derive the expression for joule Thomson coefficient.

 Show that the value of this coefficient for an ideal gas is zero
- 20 (a) An air conditioning system has the following conditions CO6-App (16) 1)outdoor conditions 15°C dry bulb temperature and 10°C wet bulb temperature 2)required conditions 20°C DBTand 50% relative humidity, amount of pre air circulated 0.25 m³/min per person 3) seating capacity 50 person to requied conditions is achieved first by heating and then by adaibatic humidification . determine the following 1) capacity of heating coil 2)capacity of humidifier

(b) An air conditioning system has the following conditions CO6-App 1)outdoor conditions 32°C dry bulb temperature and 75% relative humidity 2)required indoor conditions 25°C DBTand 70% relative humidity, amount of pre air circulated 200 m³/min per person 3) seating capacity 50 person to requied conditions is achieved first by cooling and dehumidification and then heating Determine the following 1) capacity of cooling coil in tonnes 2)capacity of heating coil iii) Mass of water vapour removed if coildewtemp14°C