Reg. No. :

Question Paper Code: U6703

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Sixth Semester

Mechanical Engineering

21UME603 FINITE ELEMENT ANALYSIS

(Regulations 2021)

Dura	ation: Three hours		Maximum: 100 Marks						
Answer ALL Questions									
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	is a Numerical method for solving problems of Engineering and mathematical physics								
	(a) Finite Element An	alysis	(b) Finite Element Me	ethod					
	(c) Both A&B		(d) None of the above						
2.	The number of element to be selected for discretization depends upon the Co following factor is/are								
	(a) Accuracy desired		(b) Size of the element	ize of the elements.					
	(c) Number of degrees of freedom involved (d) All the above.								
3.	can resist on	ly axial loads.			CO1- U				
	(a) Bar	(b) Beam	(c) Both a & b	(d) None of the	e above				
4.	Assemblage of bars is called				CO1- U				
	(a) Truss	(b) Bar	(c) Spring	(d) None of the	e above				
5.	Linear Strain Triangular Element has number of nodes.								
	(a) 3	(b) 6	(c) 12	(d) 24					
6.	Constant Strain Trian	gular Element has	number of nodes.		CO1- U				
	(a) 3	(b) 6	(c) 12	(d) 24					
7.	A motion which repeats itself after equal interval of time is called								
	(a) Cycle	(b) Frequency	(c) Periodic Motion	(d) Damping					

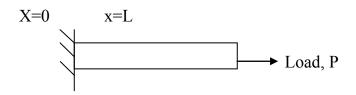
8.	Direct Method has	value.						
	(a) approximate	(b)Exact	(c)Zero	(d) All the a	ibove			
9.	Heat transfer between	two solid mediums is	called	CO1- U				
	(a) Conduction	(b) Convection	(c) Radiation	(d) None of the	above			
10.	Generally, matter exists in state(s).				CO1- U			
	(a) Solid	(b) Liquid	(c) Gas	(d) All	the above			
PART - B (5 x 2= 10 Marks)								
11.	Differentiate structural and non-structural problems.							
12.	Define degrees of freedom.							
13.	Write down the stress-strain relationship matrix for plane strain condition.							
14.	Distinguish between	Direct and Iterative	e methods for so	olving system of	CO1- U			

15. Compare Path Line and Stream Line. CO1- U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) The following differential equation is available for a physical CO4 Ana (16) phenomenon

 $\frac{d^2y}{dx^2} - 10 x^2 = 5; \quad 0 \le x \le 1$

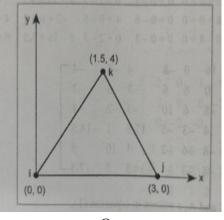

equations.

with boundary conditions as y(0) = 0 and y(1) = 0

By using Galerkins method of weighted residuals to find an approximate solution of the above different equation and also compare with exact solution.

Or

(b) A bar of uniform cross section is clamped at one end and left free CO4 - Ana (16) at the other end and it is subjected to a uniform axial load P as shown in Fig. Analyze the displacement and stress in a bar by using two terms polynomial and three terms polynomial, compare with exact solutions.



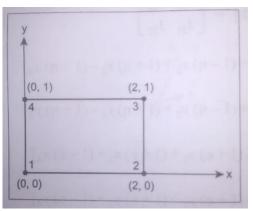
17. (a) Using two finite elements, find the stress distribution in a CO2- App (16) uniformly tapering bar of circular cross- sectional area 3 cm² and 2 cm² at their ends, length 100 mm, subjected to an axial tensile load of 50 N at smaller end and fixed at larger end. Take the value of Young's modulus $E= 2x10^5 \text{ N/mm}^2$.

Or

- (b) Derive the stiffness matrix for One dimensional Linear Bar CO2- App (16) Element. And also list out the properties of stiffness matrix.
- 18. (a) Determine the stiffness matrix for the CST element shown in CO2 App (16) figure.

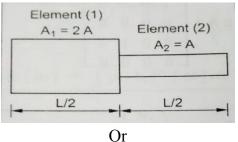
The co-ordinates are given in units of millimeters. Assume plane stress conditions. Take E=2.1 x 10^5 N/mm², v=0.25 and t=10 mm.

Or

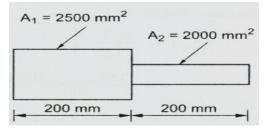

- (b) A fournoded Rectangular element as shown in figure. Determine CO2 App (16) the following:
 - (i) Jacobian Matrix
 - (ii) Strain-Displacement Matrix.
 - (iii) Element Stresses

Take $E = 2x10^5$ N/mm², v = 0.25,

 $u = [0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0]^{T}, \ \varepsilon = 0, \eta = 0$


Assume plane

condition.


stress

19. (a) Compare the natural frequencies of longitudinal vibration of the CO4- Ana (16) unconstrained stepped bar as shown in the figure.

(b) Compare the eigen values and frequencies for the stepped bar as CO4- Ana (16) shown in the figure.

Take, Young's modulus $E = 2 \times 10^5 \text{ N/mm}^2$, Unit weight Density $\rho = 0.8 \times 10^{-4} \text{ N/mm}^3$

- 20. (a) An aluminium alloy fin of 7mm thick and 50mm long protrudes CO6 Eva (16) form a wall, which is maintained at 120°C. The ambient air temperature is 22°C. The heat transfer coefficient and thermal conductivity of the fin material are 140W/m²K and 55W/mK respectively. Evaluate the temperature distribution of fin.
 - Or
 - (b) A steel rod of diameter d= 2 cm, Length L=5 cm and thermal CO6 Eva (16) conductivity k = 50W/m°C is exposed at one end to a constant temperature of 320°C. The other end is in ambient air of temperature 20°C with a convection coefficient of h = 100 W/m²°C. Evaluate the temperature at the midpoint of the rod.