A		Reg. No. :												
		Question	Pan	er (Cod	e: T	[67()2						
	B.E. / B	.Tech. DEGRE	-						L 20	24				
			xth S)							
		Mecha	nical	Eng	ginee	ring								
	21UME602-OPERATIONS RESEARCH FOR MECHANICAL ENGINEERS													
	(Regulations 2021)													
Dura	Puration: Three hours Maximum: 100 Marks													
		Answe	er AI	LL Q	uesti	ons								
		PART A -	· (10	x 1 =	= 10	Mar	(s)							
1.	If a constraint with>=ty	pe, then_varia	ble s	houl	d be	adde	ed						CO	1 - U
	(a) Slack	(b) Surplus			(0	e) Ar	tifici	ial			(d) D	ecisi	on
2.	A minimization proble changing the sign of co			in to	o a m	axin	nizat	ion p	orobl	lem t	у		CO	1 - U
	(a) Constraints				(t	o) Ot	ojecti	ive F	unct	tion				
	(c) Both (a) and (b)				(0	l) No	one c	of the	e abo	ve				
3.	Degeneracy in an mxn occupied cells is less th		proł	olem	0001	urs v	vhen	the	num	ber o	of		CC	01 U
	(a) m-n-1	(b) m+n+1			(0	c) m-	- n - 1				((d) 21	n+31	ı-1
4.	TSP stands for												CC	01 U
	(a) Transportation Prob	olem			(ł	o) Tr	avell	ing	Sales	sman	Pro	blem		
	(c) Travelling Schedule	e Problem			(0	l) Ta	sk S	ched	uling	g Pro	blen	1		
5.	Indicating the predece using	essor and succes	ss or	relat	ions	hip c	learl	y by					CO	-U
	(a) Dummy row				(ł	o) Di	ımm	y co	lumr	ı				
	(c) Dummy activity				(0	l) No	one c	of the	e abo	ve				
6.	CPM stands for_												CC	01 U
	(a) Crucial path method	d			(ł	o) Ce	ntra	l patl	n me	thod				
	(c) Critical path method	d			(0	l) Ci	rcula	ir pa	th m	ethoo	1			

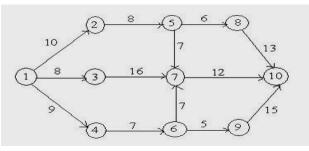
7.	When the demand in the model is called as	-	nd is not known accuratel	y then (CO1 U			
	(a) Probabilistic	(b) Deterministic	(c) Uniform	(d) Var	iable			
8.	Which of the follow:	ing is an inventory ma	inagement technique?	С	01 - U			
	(a) HML analysis	(d) All the abo	ove					
9.	The rectangular game solved by	es of (2xn) or (mx2) s	size with out saddle point	can be (CO1 U			
	(a) Graphical method	d	(c) Matrix method	l				
	(b) Arithmetic metho	od	(d) Approximation	n method				
10.	One of the methods for	or simplifying mxn ga	me with mixed strategy is	(CO1 U			
	(a) Dominance (b) Graphical (c) Saddle							
		PART – B (5 x	x 2= 10 Marks)					
11.	Explain the term alte	ernate solution		С	01 - U			
12.	Explain the condition problem.	ns for optimal solutior	n reached in a travelling sa	lesman C	01 - U			
13.	Explain free float. CO1-U							
14.	Explain lead time. CO1-U							
15.	. Explain zero sum games. CO1-U							
		PART – C (S	5 x 16= 80 Marks)					
16.	(a) Solve the follow Maximize Z= subject to	wing LPP using Graph $2X_1+5X_2$ $1X_1+4X_2\leq 24$ $3X_1+1X_2\leq 21$ $1X_1+1X_2\leq 9$ $X_1,X_2\geq 0$ Or	nical Method.	CO2-App	(16)			
		wing LPP using simple ize $Z=6X_1+8X_2$ $30X_1+20X_2 \le$ $3005X_1+10X_2 \le$ 110 $X_1,X_2 \ge 0$	ex	CO2-App	(16)			

17. (a) Solve the following transportation problem using VAM method. CO2 Destination

		А	В	С	D	Supply
Source	1	11	20	7	8	50
	2	21	16	20	12	40
	3	8	12	18	9	70
	Demand	30	25	35	40	
		O	-			

(b) Solve the following assignment problem.

		Operator							
		1	2	3	4	5			
	1	20	22	35	22	18			
Job	2	4	26	24	24	7			
JOD	3	23	14	17	19	19			
	4	17	15	16	18	15			
	5	16	19	21	19	25			


18. (a) Consider the details of a distance network as shown below.(i) Construct a project network

(ii) Determine the maximal flow from node 1 to 5.

Activity (i-j)	0-1	0-2	2-1	1-3	2-4	4-3	3-5	4-5
Flow (f _{ij})	11	12	1	12	11	7	19	4
Flow (f _{ji})	-	-	-	-	-	-	-	-
Or								

(b) A project network is shown below with duration in days: CO2- App(i) Find the critical path

(ii) Calculate the earliest start, earliest finish, latest start, latest finish.

CO2- App (16)

(16)

CO2-App (16)

CO2-App (16)

- 19. (a) A company uses 100000 units of a particular item per year. CO3 App Each item costs `2. The production engineering department estimates the holding cost as 12.5% of the value of the inventory per day. The replenishment rate is uniform at 500 units per day. Assuming 250 working days (for replenishment purpose), calculate the
 - (a) optimal set-up quantity;
 - (b) total cost on the basis of optimal policy; and
 - (c) Optimal number of set-ups.

Or

(b) An Electromechanical equipment has a purchase price of Rs. CO3- App (16) 7000 its resale value and running cost are given below. Find the optimum replacement period.

Year	Running Cost (Rs)	Resale Value (Rs)			
1	2000	4000			
2	2100	3000			
3	2300	2200			
4	2600	1600			
5	3000	1400			
6	3500	700			
7	4100	700			
8	4600	700			

20. (a) In a self-service store with one cashier, 8 customers arrive on an CO3 - App (16) average of every 5 mins. And the cashier can serve 10 in 5 mins. If both arrival and service time are exponentially distributed, then determine

(a) Average number of customer waiting in the queue for average

(b) Expected waiting time in the queue

(c) What is the probability of having more than 6 customers In the system.

Or

(16)

(b) The following table represents the payoff matrix with respect to CO3 - App (16) player A. Solve it optimally using dominance property.

		Player B						
		1	2	3	4	5		
	1	4	6	5	10	6		
Player	2	7	8	5	9	10		
А	3	8	9	11	10	9		
	4	6	4	10	6	4		

U6702

U6702

U6702