A
\mathbf{A}

Reg. No. :					
O					

Question Paper Code: 96703

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Sixth Semester

Mechanical Engineering

	19	9UME603 - OPERAT	ΓIONS RESEARCH		
		(Regulation	ns 2019)		
Dura	ation: Three hours		Max	ximum: 100 Ma	rks
		Answer ALL PART A - (10 x	_		
1.	Any feasible solution objective function of	•		mizes) the	CO1- U
	(a) Optimal solution		(b) Non basic varia	ıble	
	(c) Solution		(d) Basic feasible s	solution	
2.	If a constraint with <=	= type, then	variable should be a	dded	CO1- U
	(a) Slack	(b) Surplus	(c) Artificial	(d) Decision	
3.	For solving an assign	ment problem, which	method is used		CO1- U
	(a) MODI	(b) Hungarian	(c) German	(d) Americ	an
4.	MODI method also ca	alled as			CO1- U
	(a) North West Corne	er rule	(b) Least Coast me	ethod	
	(c) U-V method		(d) Stepping Stone	e method	
5.	In which model, al distance?	l the nodes must b	be connected with	minimum	CO1- U
	(a) Shortest path		(b) Maximal flow		
	(c) Minimal spanning	tree	(d) Critical path		
6.	Which method is a pr	obabilistic approach?			CO1- U
	(a) CPM	(b) PERT	(c) PRIM'S	(d) DIJKS	ΓRA'S
7.	The inventory may be	e categorized as			CO1- U
	(a) Raw materials inv	rentory	(b) In-process inve	ntory	
	(c) Finished goods in	ventory	(d) All the above		

8.	The inventory needs to be maintained to decrease the	CO1- U
	(a) Shortage costs (b) Setup costs (c) Loss of goodwill (d) All the above	ve
9.	If a rectangular game has no saddle point, then the strategies of players are	CO1- U
	(a) Pure strategies (b) Mixed strategies	
	(c) Unique strategies (d) Specific strategies	
10.	One of the methods for simplifying m x n game with mixed strategy is	CO1- U
	(a) Dominance (b) Graphical (c) Saddle (d) Minima	X
	PART – B (5 x 2= 10 Marks)	
11.	Explain the term operation research.	CO1- U
12.	Explain unbalanced transportation problem. How do you balance it?	CO1- U
13.	Explain network with an example.	CO1- U
14.	Explain individual replacement and group replacement with an example.	CO1- U
15.	Explain why we use graphical method.	CO1- U
	PART – C (5 x 16= 80 Marks)	
16.	(a) Solve the following LPP using graphical method	0 (16)
	(b) Use Simplex method to solve the following LP problem to Maximize $Z = 3X_1 + 2X_2 + 5X_3$ Subject to $1X_1 + 4X_2 \le 420$ $3X_1 + 2X_3 \le 460$ $1X_1 + 2X_2 + X_3 \le 430$ $X_1, X_2, X_3 \ge 0$	0 (16)

17. (a) Solve the following TP problem using Least Cost method for CO2- App (16) initial feasible solution and MODI method for optimal solution.

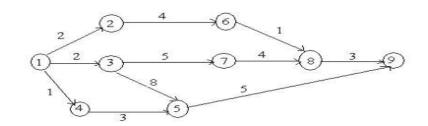
		То				
	5	2	4	3	22	
From	4	8	1	6	15	
	4	6	7	5	8	
Demand	7	12	17	9	1	

Or

(b) Solve the following assignment problem.

CO2- App (16)

		I	II	III	IV	V
	1	11	17	8	16	20
Jobs	2	9	7	12	6	15
1008	3	13	16	15	12	16
	4	21	24	17	28	26
	5	14	10	12	11	15


Machines

- 18. (a) Consider the details of a distance network as shown below. CO2- App (16)
 - (i) Construct a project network
 - (ii) Determine the maximal flow from node 1 to 5

Arc $(i-j)$	Flo	OW
Aic (i – j)	f_{ij}	f_{ji}
0-1	11	
0-2	12	
1-3	12	
2-1	1	
2-4	11	
3-4	7	
3-5	19	
4-5	4	

Or

(b) Find the critical path and calculate the earliest start, earliest CO2- App (16) finish, latest start, latest finish, total float, free float and independent float.

- 19. (a) A factory needs 36000 units annually of a component that cost CO3- App (16) Rs.2 per unit. Cost of each order placing is Rs. 25 and inventory carrying cost is Rs. 10 per year. Find
 - (i) Economic order quantity
 - (ii) Number of orders per year
 - (iii) Time between the orders
 - (iv) Optimal total inventory cost

Or

(b) The cost of a bike is Rs. 3000. The salvage value (resale CO4-App (16) value) and the running cost are given as under. Find the most economical replacement age of the bike.

Year	1	2	3	4	5	6	7
Running Cost	600	700	800	900	1000	1200	1500
Resale Value	2000	1333	1000	750	500	300	300

- 20. (a) Consider a box office ticket window being manned by a single CO3- App server. Customer arrives to purchase ticket according to Poisson input process with a mean rate of 30/hr. the time required to serve a customer has an ED with a mean of 90 seconds determine:
 - (a) Mean queue length.
 - (b) Mean waiting time in the system.
 - (c) The probability of the customer waiting in the queue for more than 10min.
 - (d) The fraction of the time for which the server is busy.

Or

(b) Solve the following game.

CO3- App (16)

(16)

		Player B				
		I	II	III		
Player A	I	1	7	2		
	II	6	2	7		
	III	6	1	6		