A		Reg. No. :												
	Question Paper Code: U3707													
B.E./B.Tech. DEGREE EXAMINATION, MAY 2024														
Third Semester														
Mechanical Engineering														
21UME307 - FLUID MECHANICS AND HYDRAULIC MACHINERY														
(Regulations 2021)														
Dura	ation: Three hours								Μ	laxin	num	: 100	Mar	ks
Answer ALL Questions														
PART A - (10 x 1 = 10 Marks)														
1.	Which of the following is an example of laminar flow?										CO)1-U		
	(a) Underground flow (b) Flow past tiny bodies							S						
	(c) Flow of oil in measuring instruments (d) All of these.													
2.	Reynolds Number for laminar flow is										CC)1- U		
	(a) Re > 4000	(b) Re = 2000	to 40	00	(c)	Re <	< 200	0	(d)) Noi	ne of	the	these	<u>,</u>
3.	The coefficient of viscosity may be determined by										CC)1- U		
	(a) capillary tube method				(b) orifice tube viscometer									
	(c) rotating cylinder method				(d) all of these									
4.	At the center line of a pipe flowing under pressure where the velocity gradient is zero, the shear stress will be CO1-U)1- U							
	(a) minimum	(b) maximum			(c) z	zero				(d	l) an	y val	ue	
5.	Poise is the unit of												CC)1- U
	(a) mass density	(b) kinematic v	viscos	sity	(c)	visco	osity			(d	l) ve	locity	y gra	dient
6.	Which of the following is a dimensionless equation?							CO1- U						
	(a) Reynold's equation (b) Euler's equation (c) Weber's equatio						tion	(d) all of the above						
7.	The speed ratio in case of Francis turbine varies from										CC)1- U		
	(a) 0.15 to 0.3	(b) 0.4 to 0.5		(0	c) 0.6	5 to ().9			(d	l) 1 t	o 1.5		

8.	In a Kaplan turbine runner the number of blades are generally between									
	(a) 2) 2 to 4 (b) 4 to 8 (c) 8 to 16 (d) 16			(d) 16 to 24					
9.	Whi appl	Which of the following pump is preferred for flood control and irrigation applications?				rrigation	CO1- U			
	(a) c	a) centrifugal pump			(b) axial flow pump					
	(c) r	(c) mixed flow pump			(d) reciprocating pump					
10.	Reci	Reciprocating pumps are classified according to					CO1- U			
	(a) I	Drag force	(b) Number of cylind	ers (c) S	hock waves	(d) Flow spe	eed			
PART - B (5 x 2= 10 Marks)										
11.	State Newton's law of viscosity.									
12.	Name some minor losses						CO1- U			
13.	Explain the similarities between models and prototype						CO1- U			
14.	Classify the different types of turbines.									
15.	Dist	Distinguish Single acting and Double acting reciprocating pump								
PART – C (5 x 16= 80 Marks)										
16.	(a) Velocity distribution for flow over a flat plate is given by $u = CO2$ - App (16) (3/2)y - y3/2, where u is the point velocity in m/s at a distance y meter above the plate. Determine the shear stress at $y = 9$ cm. assume dynamic viscosity as 8 poise.									
	(b)	Calculate t	he dynamic viscosit	y of oil, w	hich is used for	r CO2- App	(16)			
	lubrication between a square plate of size $0.8m \times 0.8m$ and an inclined plane with angle of inclination 30° . The weight of the									
		square plate is 300N and it slides down the inclined plane with a								
	uniform velocity of 0.3m/s. The thickness of the oil film is 1.5mm									

17. (a) Derive DARCY – WEISBACH Equation. CO2- App (16) Or

(b) The rate of flow of water through a horizontal pipe is 0.25 m3/s. CO2- App (16) The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is 11.772 N/cm2. Determine: (i) Loss of head due to sudden enlargement (ii) Pressure intensity in the large pipe (iii) Power lost due to Enlargement

18. (a) Using Buckingham's π – Theorem, show that the velocity through CO4- App (16) the circular orifice is given by:

 $V = \sqrt{2gH} f\left[\frac{D}{H}, \frac{\mu}{\rho VH}\right]$

H = Head causing flow, D = Diameter of orifice, μ = Dynamic Viscosity, ρ = Density and g = acceleration due to gravity.

Or

- (b) The efficiency (η) of a fan depend on density (ρ), dynamic CO4- App (16) viscosity (μ) of the fluid, angular velocity (ω), diameter (D) of the rotor and discharge (Q). Express η in terms of dimensionless parameters using Buckingham's π theorem.
- 19. (a) A Pelton wheel is to be designed for the following specifications: CO3- App (16) Shaft power = 11772 kW, Head = 380 m, Speed = 750 rpm, Overall Efficiency = 86%, Jet diameter is not to exceed one-sixth of the wheel diameter. Determine (i) The wheel Diameter (ii) The number of jets required (iii) Diameter of the jet.

Or

- (b) An inward flow reaction turbine has external and internal CO3- App (16) diameters as 1.0 m & 0.6 m respectively. The hydraulic efficiency of the turbine is 90%. When the head on the turbine is 36m. The velocity of flow at outlet is 2.5 m/s. and discharge at outlet is radial. If the vane angle at outlet is 15° and width of the wheel is 100mm at inlet and outlet. Determine: (i) Guide blade angle, (ii) Speed of the turbine, (iii) Vane angle of the runner at inlet, (iv) Volume flow rate of turbine and (v) Power developed.
- 20. (a) Explain the working principle of single acting & double acting CO1-U (16) reciprocating pump with a neat sketch.

Or

(b) Explain the working principle of Single stage centrifugal Pump CO1-U (16) with a neat sketch.