A		Reg. No. :											
		Question Pa	per (Cod	e: 9	970)5						
	B.E.	./B.Tech. DEGREE EX	XAM	[NA]	ΓΙΟΝ	I, Al	PRIL	202	24				
		El	ective	e									
		Mechanica	al Eng	ginee	ring								
	19U	ME905– COMPUTAT	FION	AL F	FLUI	DD	YNA	AMIC	CS				
		(Regula	tions	2019))								
)ur	ation: Three hours							M	laxir	num	: 100) Mai	rks
		Answer A	LL Q	uesti	ons								
		PART A - (10) x 1 =	= 10	Mar	ks)							
1.	For partial differential equation, if $b^2 - 4ac = 0$ then equation is called								CO	1 - U			
	(a) hyperbolic		(b) pa	rabo	lic							
	(c) elliptic		(d) No	one c	of the	e abo	ove					
2.	Truncation error be	ecomes zero as mesh sp	pacing	g ten	ds to							CO	1- L
_	(a) maximum	(b) minimum	(c) ze	ro			_	((d) e	qual		
3.	When a direct computation of dependent variables can be made in CO1 terms of known quantities, computation is said to be								1- U				
	(a) implicit	(b) explicit	(c) un	ique					(d) d	epen	dent	
	If flow across boundary is zero, normal velocities are set to be									CO	1 - L		
	(a) maximum			(b) zero									
	(c) minimum		(d) va	lues	ofn	eares	st noo	de				
5.	Method of approx	ximating differential	equa	tions	s by	a	syste	em	of			CO	1- U
	algebraic equations for variables at some set of discrete locations in						in						
	space and time is called												
	(a) Localization	(b) Merging	(c) Di	scret	tizati	ion			(d) N	lone	of th	lese
6.	In steady flow of a fluid, acceleration of any fluid particle is									CO	1 - U		
	(a) constant	(b) zero	(c) va	riabl	e				(d) n	on z	ero	
7.	If Pu is upstream	pressure and Pd is	dow	nstre	am	press	sure,	Eul	er			CO	1 - L
	*	-				-	-						

	num	ber is equal to $D = \sqrt{n} \frac{V^2}{2}$	$(\mathbf{h}) \mathbf{p}_{\mathbf{h}} = \mathbf{p}_{\mathbf{h}} \mathbf{J}_{\mathbf{h}} \mathbf{V}_{\mathbf{h}}^{2}$	$(.)$ D D $\frac{1}{-3}$ $\frac{1}{-3}$		-1 / X Z		
	(a) I	² d - Pu/pV ²	(b) $Pu - Pd/pv^2$	(c) $Pu - Pd/pV^3$	(d) Pu - P	d/pV		
8.	Met	hod of approxin	nating differential eq	quations by a system of		CO1- U		
	alge	braic equations for	or variables at some	set of discrete locations in				
	spac	e and time is calle	ed					
	(a) I	Localization	(b) Merging	(c) Discretization	(d) None	of these		
9.	Eule	er equation is useful	ul for			CO1- U		
	(a) viscid flow (b) inviscid flow (c) rotational flow					(d) None of these		
10.	Frou	ide number indica	tes influence of			CO1- U		
	(a) g) gravity (b) velocity (c) pressure			(d) temperature			
			PART – B (5 x	2= 10Marks)				
11.	Classify Partial Differential Equation							
12.	Write about Lagrangian approach.							
13.	Exp state	lain the methods e diffusion.	involved to solve the	e FVM for one dimensional	l steady	CO3 R		
14.	Write the QUICK scheme for steady one dimensional convection diffusion.							
15.	5. Define Staggered Grid.							
			PART – C (5	x 16= 80 Marks)				
16.	(a)	Derive the mass	equation for a 3D com Or	pressible flow	CO3- A	(16)		
	(b)	Consider heat tra flow is steady, over a flat plate. parallel to the p equation for fl boundary condit parabolic or ellip	insfer in the boundary two- dimensional ind For stream velocity plate. Write the gov ow and heat baland ions. Identify whether tic.	layer over a flat plate. The compressible laminar flow of the flow is uniform and erning (partial differential ce. Give the appropriate er the equations is linear,	CO3 - A	(16)		
17.	(a)	Derive the FDM	for Simple Methods. Or		СОЗ -А	(16)		
	(b)	Derive the Iterati	ve Solution Methods.		СОЗ -А	(16)		
18.	(a)	Consider the pr	roblem of source-fre	e heat conduction in an	СО3- А	(16)		

insulated rod whose ends are maintained at constant temperatures of 100°C and 500°C respectively. The 1D problem sketched in the figure is governed by $\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$. Calculate the steady state temperature distribution in the rod. Thermal conductivity k equals 1000W/mK, cross-sectional area A is $10 \times 10^{-3} \text{m}^2$.

Or

(b) A thin plate is initially at a uniform temperature of 200° C.At a CO3 -A (16) certain time t=0 the temperature of the east side of the plate is suddenly reduced to 0° C. The other surface is insulated. Use the Explicit finite volume method in conjunction with a suitable time step size to calculate the transient temperature distribution of the slab and compare it with analytical solution at time i) t = 40s ii) t = 80s iii) t = 120s

19.	(a)	Describe in detail about Transportiveness.	CO4- A	(16)
		Or		
	(b)	Discuss in detail about Conservativeness.	CO4- A	(16)
20.	(a)	Develop mixing length model equation for the turbulence flow. Or	СО5 -А	(16)
	(b)	Develop Reynolds Stress Equation Model equation for the	СО5 -А	(16)

turbulence flow.