| Reg. No. : |  |  |  |  |  |  |
|------------|--|--|--|--|--|--|
|            |  |  |  |  |  |  |

## **Question Paper Code: U2301**

M.E. DEGREE EXAMINATION, APRIL 2024

Second Semester

Computer Science and Engineering

## 21PCS201 - IMAGE PROCESSING AND ANALYSIS

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

## PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. What is the size of the image, if its pixel resolution is 1024X1024 and bpp=8? CO2- App
- Convert RGB Color Space image to HSI Components Value of Pixel CO2- App (100,150,200).
- 3. Consider the following 2-bit image of size 5X5: Find the mean(Average Intensity) CO2- App value of r?

| 0 | 0 | 1 | 1 | 2 |
|---|---|---|---|---|
| 1 | 2 | 3 | 0 | 1 |
| 3 | 3 | 2 | 2 | 0 |
| 2 | 3 | 1 | 0 | 0 |
| 1 | 1 | 3 | 2 | 2 |

4. Consider the following image, Apply Weighted Average Filter to calculate the new CO2- App value of the pixel (2,2) if smoothing is done using a 3X3 Neighborhood.

| 0 | 1 | 0 | 2 | 7 |
|---|---|---|---|---|
| 2 | 7 | 7 | 4 | 0 |
| 5 | 6 | 4 | 3 | 3 |
| 1 | 1 | 0 | 7 | 5 |
| 5 | 4 | 2 | 2 | 5 |

| 5. | Formulate how the derivatives are obtained in edge detection   | CO2- Apr |
|----|----------------------------------------------------------------|----------|
| 5. | i officiate now the derivatives are obtained in eage detection | 002 ripp |

- 6. Identify the detection of discontinuity in an image using segmentation CO2-App
- 7. Calculate values of a standard 8.5" by 11" sheet of paper scanned at 100 samples CO2- App per inch (dpi) and quantized to two gray levels (binary image) would require more than 100k bytes to represent
- 8. If an image contain spatial or temporal redundancies can be exploited for data CO2- App compression. Differentiate Lossy and Lossless Compression
- 9. Find the normalized starting point of the code 10176722335422. CO2- App
- 10 What is the order of the shape number for the figure shown? Please obtain the CO1- App . shape number



| PART B - | $(5 \times 16 =$ | 80 Marks) |
|----------|------------------|-----------|
|----------|------------------|-----------|

(a) Use the following components R= 24, G=98, B=118 and convert into CO2-App (16)
 HSI component, CMY, YIQ

Or

(b) Let  $V = \{1, 2\}$  and compute the lengths of the shortest 4-, 8-, and m- CO2-App (16) path between p and q. If a particular path does not exist between these points, explain why.

| 3     | 1 | 2 | 1(q) |
|-------|---|---|------|
| 2     | 2 | 0 | 2    |
| 1     | 2 | 1 | 1    |
| 1 (p) | 0 | 1 | 2    |

12 (a) Equalize the Given Histogram

| Gray Levels | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7  |
|-------------|-----|-----|-----|-----|-----|-----|-----|----|
| No of       | 790 | 102 | 850 | 656 | 329 | 245 | 122 | 81 |
| Pixels      |     | 3   |     |     |     |     |     |    |

Or

CO2- App (16)

(b) Consider the given input image (f) and the filter. Apply Correlation on CO2- App (16) the input image. Find the final output of the image (g)

| 2 | 2 | 2 | 3 |
|---|---|---|---|
| 2 | 1 | 3 | 3 |
| 2 | 2 | 1 | 2 |
| 1 | 3 | 2 | 2 |

| 1 | -1 | -1 |
|---|----|----|
| 1 | 2  | -1 |
| 1 | 1  | 1  |

•

- 13 (a) Given the following set of Points use Hough Transform to join these CO2- App (16)
  . points A(1,4) B(2,3) C(3,1) D(4,1), E(5,0)
  - Or
  - (b) Apply the laplacian operator for detection of isolated points and lines CO2- App (16) in image segmentation.

| 1/ | (2) | Decode the message 0 32256 | based on the coding model | $CO_{2}$ Ann | (16) |
|----|-----|----------------------------|---------------------------|--------------|------|
| 14 | (a) | Decoue me message 0.52250  | based on the county model | CO2- App     | (10) |

|             | -   |     |     |     |     |     |
|-------------|-----|-----|-----|-----|-----|-----|
| Symbol      | а   | e   | i   | 0   | u   | !   |
| Probability | 0.2 | 0.3 | 0.1 | 0.2 | 0.1 | 0.1 |
| Or          |     |     |     |     |     |     |

(b) Use Run length coding to find the frequency of occurrence in the given CO2- App (16) image and brief about the method.

| 1 | 1 | 1 | 1 |
|---|---|---|---|
| 1 | 2 | 2 | 2 |
| 2 | 4 | 4 | 4 |
| 5 | 6 | 7 | 7 |

15 (a) Calculate the Erosion and dilation of the following image. Let the CO2- App (16) image A be

| -  |    |    |    |
|----|----|----|----|
| 11 | 18 | 13 | 12 |
| 12 | 2  | 22 | 22 |
| 22 | 22 | 22 | 2  |
| 1  | 68 | 70 | 6  |

Let the image B be

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Or

(b) Design a coder for a source that emits letters from an alphabet CO2- App (16) A={k1,k2,k3,k4,k5} with probabilities P(k1)=p(k3)=0.2, P(k2)=0.4, P(k4)= P(k5)=0.1, entropy = 2.122bits/symbol. Find a Huffman code for this source, the average length of the code and its redundancy