Reg. No.:

Question Paper Code: U3904

Ph.D. COURSE WORK EXAMINATION, , MAY 2024

Second Semester

Computer Science and Engineering

21PCS904 - OPTIMIZATION TECHNIQUES

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(5 \times 20 = 100 \text{ Marks})$$

(a) constraint Summation (xi x wi) ≤ 15

Constraint Summation (xi x wi) \ 15.											
Objects	1	2	3	4	5	6	7				
O											
Profit P	10	5	15	7	6	18	3				
Weight	2	3	5	7	1	4	1				
W											

Or

(b) Maximize
$$Z = 3x1 + 4x2$$
 subject to

$$x1 + 2x2 \le 4$$

$$3x1 + 2x2 \le 6$$

 $_{\rm X}1$, $_{\rm X}2 >= 0$ by graphical method

2 (a) Maximize
$$Z = 5x1 + 3x2$$

CO2- App

Subject to

$$3x1 + 5x2 \le 15$$

$$5x1 + 2x2 \le 10$$

 $x1, x2 \ge 0$ using Simplex Method.

Or

(b) Maximise Z = x1 + x2 subject to

CO2- App (20)

CO2-App

CO2-App

(20)

(20)

(20)

$$3x1 + 2x2 \le 5$$

$$x^2 \le 2$$

 $x1, x2 \ge 0$, x1 and x2 are integers. Solve with Gomory's cutting plane method.

- 3 (a) Sarah has a new puppy and she wants to maximize her outdoor time, so CO2-App she builds a fenced in play area. She has 40 feet of fencing, and she wants to fence off a rectangular area next to her house. The house will be one side of the play area, so that side needs no fencing. In order for the puppy to have adequate space, the area has to be at least 5 feet long and 5 feet wide, What is the longest area she could have? Is there a smallest area she could have if she wants to have all 40 feet for fencing?
 - (b) Find out the maximum area a rectangle can be bounded by the line y = CO2-App (20) 6 and the parabola $y = x^2$.
- 4 (a) Explore the steps in a genetic optimization algorithm with real life CO2- App (20) problem.

Or

- (b) Explore the steps how genetic algorithm can be used to solve Knapsack CO2- App problem with an example. (20)
- 5 (a) $F(x) = x^2$. Apply genetic algorithm taking an initial population of 4, CO2-App applying fitness function, crossover and mutation once to find the maximum value from $0 \le x \le 31$.

Or

(b) A salesman has to cover six cities with distance chart as given below: CO2-App (20) Perform one iteration of genetic algorithm with following parameters: Population size of 5.

Single point crossover with crossover probability of 0.8.

Swap mutation with probability of 0.01.

		То								
		Mumb ai	Kolkatt a	Varan asi	Jabalp ur	Vijaya wada	Jaipur			
From	Mumbai	0	1930	1484	1096	991	1152			
	Kolkatta	1930	0	684	1091	1211	1582			
	Varanas i	1484	684	0	459	1427	884			
	Jabalpu r	1096	1091	459	0	1046	808			
	Vijayaw ada	991	1211	1427	1046	0	1619			
	Jaipur	1152	1582	884	808	1619	0			