Reg. No. :

Question Paper Code:U2912

Ph.D. COURSE WORK EXAMINATION, MAY 2024

Electives

Communication Systems

21PCM512- MICROELECTRONICS AND VLSI TECHNOLOGY

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

(a) For a free electron with a velocity of 107 cm/s, what is its de Broglie CO3- App (20) wavelength? (b) In GaAs, the effective mass of electrons in the conduction band is 0.063 m₀. If they have the same velocity, find the corresponding de Broglie wavelength.

Or

- (b) A metal, with a work function $\phi_m = 4.2$ V, is deposited on an n-type CO3- App (20) silicon semiconductor with affinity $\chi = 4.0$ V and $E_g = 1.12$ eV. What is the potential barrier height seen by electrons in the metal moving into the semiconductor?
- 2. (a) A particular silicon device needs to have an implant of boron with a CO3- App (20) peak at a depth of $0.3\mu m$ and a peak concentration of 10^{17} cm⁻³. Determine the implant energy and dose that should be used for this process. Find the as implanted junction depth if the substrate is n-type with a concentration of 10^{15} cm⁻³.

Or

- (b) A typical high current implanter operates with an ion beam of 2mA. CO3- App (20) How long would it take to implant a 150 mm- diameter wafer with O^+ to a dose of $1 * 10^{18} \text{ cm}^{-2}$?
- 3. (a) Certain resists have contrast as large as 7. If a positive tone resist has D_o CO5- Ana (20) = 10mJ/cm² and has $\gamma = 7$. Find D_{100} . For some applications to make a tapered resist profile, that is, a resist edge that is not vertical, but rather rises more slowly from the exposed region. To do this would you a high dose illumination or a low dose illumination? Justify your answer. What limits the exposure?

- (b) A <100>-oriented silicon wafer 150 mm in diameter is 625 μm thick. CO5- Ana (20) The wafer has 1000 μm × 1000 μm ICs on it. The IC chips are to be separated by orientation-dependent etching. Describe two methods for doing this and calculate the fraction of the surface area that is lost in these processes.
- 4. (a) Given a switch box, develop an efficient algorithm to find the minimum CO5- Ana (20) diameter of rectilinear Steiner trees. The diameter of a tree is the maximum distance between any two of its vertices

Or

- (b) Prove that for n = 3, single trunk Steiner tree is indeed an optimal CO5- Ana (20) rectilinear Steiner tree.
- 5. (a) Describe Landauer- Büttiker Formalism for Conduction in Confined CO2- U (20) Structures

Or

(b) Explain Ballistic Quantum Transport in Semiconductor Nanostructures CO2- U (20)