A		Reg. No. :										
		Question I	Paper C	Code	: 93	022						
	B.E./B.Tech. DEGREE EXAMINATION, MAY 2024											
		Thi	rd Semes	ter								
		Computer Sci	ience and	Engi	neeri	ng						
	19UMA322	2- Probability, Que	cueing Th	eory a	ind N	lume	rical	Met	hods	5		
		(Reg	gulation 2	019)								
		(Common to In	formation	n Tecl	hnolo	ogy)						
Dur	ation: Three hours						Μ	laxin	num	: 100) Mai	ks
		Answe	er All Que	stions	5							
		PART A -	(10x 1 =	10 M	arks)							
1.	1. If Moment generating function $M_x(t) = \frac{2}{2-t}$, then the mean value CO1- Ap)1- App		
	(a) 1/2	(b) 2	(c) 1	/4				(d)	1/3			
2.	A Continuous r.v has a is	a p.d.f $f(x) = 3x^2, 0 \le$	$x \leq 1$, If $P($	X > b)	= 0.05	, the	en va	lue c	of b		CC	01- App
	(a) 0.9308	(b) 0.9803	(c) 0.98	30				(d)	0.90	38		
3.	The relation between L	$s \& L_q$ is									CO	5- U
	(a) $L_s = \lambda L_q$	(b) $L_q = \lambda L_s$	(c)	$L_q =$	$L_s + \frac{2}{3}$	<u>г</u> и		(d)	$L_s = 1$	L_q +	$\frac{\lambda}{\mu}$	
4.	For a model (M/M/1): is 4 per hour then w_s	$(\infty / FCFS)$ The arr	ival rate i	s 3 p	er ho	ur an	id sei	rvice	rate	e C	02-	Арр
	(a) 55 Minutes	(b) 65 Minutes	(a) 5	5 Mii	nutes			(b)	65 N	/linu [*]	tes	
5.	One of the normal equ	ation of parabola	y = a + bx	$+ cx^2 i$	S						CO	6- U
	$\sum xy = a \sum x +$ (a) $b \sum x^{2} + c \sum x^{3}$	(b) $\sum xy = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$	(c)	$\sum y^{2}$ $b \sum x^{3}$	$x = a \Sigma + c \Sigma$	$x^2 + x^4$	-	(0	b_{Σ}^{Σ}	$xy^2 = x^2 + x^2$	$= a \sum x$ $c \sum x$; + 3
6.	number of no method of least square	ormal equations an s	re require	ed to	fit	a str	aigh	t lin	e in		CO	5- U

	(a) 2	1			(b) 2				(a) 1			(b) 1	2	
7.		a 3 ×3 domina				e the	Eigen	value	s, trac	e of	matrix	k is equal	to 3	CO6- U
	(a)	12			(b) -1	2			(a) 12			(b)	-12	
8.	Itera	ation me	ethod c	onvei	ges i	$f g^1(x)$	x)						(CO6- U
	(a) >	>1			(b)<1				(a) >1			(b)<	<1	
9.	In E	In Euler's method, if h is small, the method is too								(CO6- U			
	(a) f	fast			(b)sl	ow			(a) fa	ıst		(b)	slow	
10.	The first two steps of the fourth order Rungekutta method use										(CO6- U		
	(a) Backward Euler's method													
	(c) l	Forward	Euler	's me	thod				(d) Eı	ler's	s meth	od		
						PA	RT – I	B (5 x 2	2 = 10 M	Aark	s)			
11.		oin is to head?	ssed tł	nrice;	Com	pute	the pro	obabili	ty that	ther	e will	appear atle	east CC	01- App
12.	Explain Kendall's Notation (a/b/c): (d/e) of a queueing model									(CO6- U			
13.	Wri	te down	the No	ormal	Equ	ations	of the	e curve	y = ae	bx			(CO6- U
14.										(CO6- U			
15.										CO5 U				
					-	Р	ART -	– C (5	x 16=	80M	arks)			
16.	(a)	(i)) Ca	alculate	e the (Corre	latior	n coeff	icient	for the	follo	owing	data	CO1-Ana	(8)
		Х	K	78	89	97	69	5	9 7	79	61	61		
		Y	(17 5	13 7	156	112	2 10	7 1	36	123	108		
		(ii) Co	ompute	e the	e mo	ment	gene	rating	funct	ion	of	Exponentia	al CO1-Ana	(8)
		distribu	ution a	and h	ience	find			d varia	nce				
	(b)	(i) A R	V X ł	nas th	e foll	owing)r ibutior	1				CO1 -Ana	(8)
	(0)	X	0	1		2	3	4	5	6	-			(0)
		P(X)	a	2a		2a	3a	3a	6a	8	a			
				<i>´</i>	•			and $E($	X)					
			(ii)) Cor	npute	e Var (X)							

(ii) If the density function of a continuous r.v X is given by

$$f(\mathbf{x}) = \begin{cases} ax & 0 \le x \le 1\\ a & 1 \le x \le 2\\ 3a - ax & 2 \le x \le 3\\ 0 & otherwise \end{cases}$$
(a) Compute the value of "a"

(b) Compute the c.d.f of X

17. (a) (i) Assume that the good trains are coming in a yard at the rate of 30 CO2 -Ana (8) trains per day and suppose that the inter arrival times follow an exponential distribution. The service time for each train is assumed to be exponential with an average of 36 minutes. If the yard can admit 9 trains at a time(there being 10 lines, one of which is reserved from shunting purpose), Identify the Model ,Compute the probability that the yard is empty and Compute the average queue length.

(ii) Customers arrive at a watch repair shop according to a Poisson CO2 -Ana (8) process at a rate of one per every 11 minutes, and the service time is an exponential random variable with mean 6 minutes. Identify the Model, Compute the following i) the average number of customers in the shop L_s ii) the average time a customer spends in the shop W_s iii) the average number of customers in the queue L_q iv) the probability that the server is idle.

Or

(b) A petrol pump station has 4 pumps. The service times follow the CO2 -Ana (16) exponential distribution with a mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour. Identify the Model, Compute the following i) the Probability that an arrival would have to wait in line? ii) the average waiting time, average time spent in the system and the average number of cars in the system iii) For what percentage of time would a pump be idle on an average?

18. (a) (i) Applying least square method techniques fit a straight line CO3-App (8) y = a + bx

Х	0	3	5	6	8	10	12
Y	2	5	8	9	11	12	15

CO1 -Ana

(8)

3

(ii) Applying group average method fit a second degree parabola CO3- App (8)

 $y = a + bx + cx^2$ for the following data

Х	1	2	3	4	5				
Y	5	12	26	60	97				
Or									

(b) (i) Applying method of moments fit a straight line y = ax + b CO3- App (8)

Х	1	3	5	7
Y	4	8.5	11.5	15

(ii) Applying least square method techniques fit the curve $y = ab^{x}$ with CO3-App (8) the following data:

Γ	Х	1	2	3	4	5
	Y	150	99	60	48	18

- 19. (a) (i) Compute the real positive root of $\cos x xe^x = 0$ by Newton's CO4-App (8) Raphson Method. Correct to 3 decimal places
 - (ii) Using Gauss Seidel method, solve the following Equations CO4-App (8) 3x - 13y - 3z = 49, 5x - 6y + 17z = 45, 11x + 2y - 2z = -31

Or

- (b) (i) Using Gauss Seidel method, Solve 28x+4y-z = 32: x+3y+10z = 24 CO4 App (8) 2x+17y+4z = 35
 - (ii) Compute the real positive root of $3x \cos x = 1$ by Iterative method CO4 -App (8)
- 20. (a) (i) Using R.K Method of 4th order, solve $\frac{dy}{dx} = y x^2$ with y (0.6) = CO5- App (8) 1.7379, Compute y (0.8) by taking h=0.2 (ii) Using Taylor series method Compute y(0.1) for CO5- App (8) $\frac{dy}{dx} = x^2 y - 1$ with y(0) = 1 Or
 - (b) Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, y(0.6) = CO5- App (16) 0.6841 Evaluate y(0.8) By Adams – Bashforth Method