A		Reg. No. :						
Question Paper Code: R2804								
B.E./B.Tech. DEGREE EXAMINATION, MAY 2024								
Second Semester								
Information technology								
R21UIT204 - DIGITAL PRINCIPLES & SYSTEM DESIGN								
(Regulations R2021)								
Du	ration: Three hours			Maximum: 100 Marks				
Answer ALL Questions								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$								
1.	What is the base connumber: 1101001?	nversion of decimal nur	nber for the following Bin	ary CO2-App				
	(a) 102	(b) 105	(c) 106	(d) 107				
2.	What is the output of	f that $A + \overline{AB} =$		CO2-App				
	(a) A+B	(b) B+A	(c) A+A	(d) A+B				
3.	The result obtained on binary multiplication of 1010*1100 is CO2-App							
	(a) 1111000	(b) 1111001	(c) 1111000	(d) 1111001				
4.	The Simplified expression of full subtractor Borrow is CO1-U							
	(a) $B_{out} = \overline{AB}_{in} + \overline{AB} + BB_{in}$		(b) $B_{out} = BA_{in} + BB + BA_{in}$					
	(c) $B_{out} = AB_{in} + BA + AA_{in}$		(d) $AB_{in}+BB_{in+}BB_{in}$					
5.	If the number of requiresselect	n selected input lines	nes is equal to2 ^m then	it CO1-U				
	(a) n	(b) m	(c) 2	(d) 2n				
6.	For re programmabi	lity, PLDs use		CO1-U				
	(a) PROM	(b) EPROM	(a) PROM	(d) De Multiplexer				
7.	The functional difference between SR flip-flop and JK flip-flop is that CO1-U							
	(a) JK flip-flop is faster than SR flip-flop		(b) JK flip-flop has a feedback path					
	(c) JK flip-flop accepts both inputs 1 (d) JK flip-flop does not rec			t require external clock				

8.	A counter circuit is usually constructed of					CO1-U		
	(a) A number of latches connected in cascade form							
	(b) /	A number of NAND	gates connected in c	ascade form				
	(c) <i>I</i>	A number of flip-flo	ps connected in casea	ade				
	(d) /	A number of NOR g	ates connected in cas	scade form				
9.	A c two	ondition occurs wh or more binary state		CO1-U				
	(a) c	leadlock condition	(b) Running condit	ion (c) Race condition	(d) None			
10.	The race in which stable state depends on order is called					CO1-U		
	(a) c	critical race	(b) identical race	(c) non critical race	(d) defined	l race		
			PART - B (5 x)	x 2= 10Marks)				
11.	Con	vert the following B	Decimal numbers:	CO	2-App			
	(i) 110101 ₂						
	(ii) 1100.1011 ₂						
12.	Draw the truth table for half-adder circuit.					CO2-App		
13.	Convert gray code 101011 into its binary equivalent					CO2-App		
14.	Explain the Latch function in Digital Circuit.					CO2-App		
15.	Compare Synchronous sequential circuits and Asynchronous sequential circuits CO2-A							
			PART – C (S	5 x 16= 80Marks)				
16.	(a)	Simplify the follo Implement it using $F(w,x,y,z)=\sum m(2)$	CO2-App	(16)				
	(b)	Simplify the follow i) $Y = AB + AB$	ving Boolean Expres A(B+C)+B(B+C)	sion: (4)	CO2-App	(16)		
		ii) $Y = \overline{A}$	$\overline{B}(\overline{A}+B)(\overline{B}+B)$	(4)				
		iii) $\overline{Y} = \overline{A}$	$\overline{\bar{C} + \bar{B}}\bar{C} + B\bar{C} + ABC$	(4)				
		iv) $\overline{Y = A}$	$+\bar{A}B+\bar{A}\bar{B}C+\bar{A}\bar{B}\bar{C}D$	D (4)				
17.	(a)	Design a circuit for	r BCD addition Or		CO2-App	(16)		
	(b)	Design a logic circ	uit to convert BCD t	o gray code.	CO2-App	(16)		
			2					

R2804

- 18. (a) Realize $F(w,x,y,z)=\sum(1,4,6,7,8,9,10,11)$ using 4 to 1 MUX. CO2-App (16) Or
 - (b) Design a switching circuit that converts a 4 bit binary code into a 4 CO2-App (16) bit Gray code using ROM array
- 19. (a) Explain the operation of JK Flip-flops and SR Flip flops with CO2-App (16) suitable diagrams.

Or

- (b) Design divide by 6 counter using T-flip-flops. Write state table and CO2-App (16) reduce the expression using K-map
- 20. (a) Design an asynchronous sequential circuit with two inputs X and CO2-App (16) Y and with one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, the output does not change for any change in X.

Or

(b) Design an asynchronous sequential circuit with two inputs x1 and CO2-App (16) x2 and one output Z. The output Z=1 if x1 changes from 0 to 1, Z=0 if x2 changes from 0 to 1, and Z=0 otherwise. Realize the circuit using D flip-flops

R2804