•
Λ

Question Paper Code: U2M03

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

		Second	l Semester		
		Computer Science	ce and Engineering		
	21UMA20	3- Differential Equation	ns and Complex analy	ysis	
		(Regula	tions 2021)		
		(Common to info	rmation technology)		
Dur	ation: Three hours			Maximum: 1	00 Marks
		Answer A	LL Questions		
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$		
1.	The Particular integral of $y'' + 4y' + 4y = 0$ is				CO1-Ap
	(a) xe^{-2x}	(b) xe^{2x}	(c) $x^2 e^{2x}$	(d)	0
2.	The complementar	ry function of $(4D^2 - 3D)$	-1)y=2 sin 2x is		CO6-U
	(a) $Ae^x + Be^{\frac{x}{4}}$	(b) $Ae^{-x}+Be^{5x}$	(c) $(A+Bx)e^{2x}$	(d) A	$Ae^x + Be^{4x}$
3.	IF \vec{F} is Irrotational		CO2-U		
	(a) 1	(b) 2	(c) 0	(d) 3	3
4.	Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{j} + \mathbf{z}^2 \mathbf{k}$ at $(1, 2, -3)$ is				
	(a) 8	(b)4	(c)-3	(d) ()
5.	The critical point of	of the transformation w	$= z + \frac{1}{z}$ are		CO3- App
	a) ±1	b) ±2	c) ± <i>i</i>	d) – i	
6.	The function $f(z)$	$=\frac{1}{z^2+4}$ is not analytic a	$t z = \underline{\hspace{1cm}}$.		CO3- App
	(a) 2	b) -2	c)2i	d)±2i	
7.	Simple pole is a po	ole of order			CO6-U

(c) 3

(d) -4

(b) 4

(a) 1

8.	$\int_{C} \frac{e^{z}}{z-2} dz$ where C is the unit circle with centre as origin is						O4-App			
	(a)	0	(d) 1	(c) 2	((d) π				
9.	The PDE obtained from $z = (x+a)(y+b)$ is						O5-App			
	(a) 3	Bz = px + qy	(b) $py - qx = 0$	(c) $z = pq$		(d) px+qy=0)			
10.		one dimensional ditions	wave equations rec	quire	boundary		CO5-U			
	(a) 4	1	(b) 3	(c) 2	((d) 1				
	PART - B (5 x 2= 10Marks)									
11.	· Calculate the Particular integral of $(D^2 + 3D + 2)y = \sin 3x$ CO1-App									
12.	Compute $\nabla \varphi$, if $\varphi = x^2 + y^2 + z^2$ at $(1, -1, 1)$.						O2-App			
13.	Prove that $u = e^x \cos y$ is harmonic function CO3-App									
14.										
15.	. Write the three Possible solutions of the one dimensional wave equations CO5-U						CO5-U			
			PART – C (5 x 16= 80Maı	·ks)					
16.	(a)	(i) Solve $(D^2 - 4D^2)$	$(D+3)y = e^{3x} + x^2$			CO1-App	(8)			
		(ii) Using method $(D^2 + a^2)y = \tan a$		meters solve		CO1- App	(8)			
	(b)		Or			CO1- App	(8)			
	(0)	(i) Solve $(x^2D^2 -$	$xD + 1)y = \left(\frac{\log x}{x}\right)^2$			СО1- Прр	(0)			
		•	bacteria of growing entity and at time t = 4 in 2000 bacteria?	•		CO1- App	(8)			
17.	(a)	$\vec{F} = (x^2 + y^2)\vec{i} - 2$	theorem for a $2xy\vec{j}$ in the rectangular ines $x=\pm a, y=0, and$ Or	r region in the	•		(16)			

- (b) Verify Gauss divergence theorem for the vector function $\vec{F} = CO2$ -App (16) $4xz\vec{i} y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, y = 0, z = 0 and x = 1, y = 1, z = 1
- 18. (a) (i) Determine the analytic function for which $U V = \frac{\sin 2x}{\cosh 2y \cos 2x}$ (8)
 - (ii) Determine the image of |z-2i|=2 under the transformation CO3-App (8) $w=\frac{1}{z}$

Or

- (b) (i) If f(z)=u+iv is an analytic function then Prove that CO3-App $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4 |f^1(z)|^2$ (8)
 - (ii) Determine the bilinear transformation which maps z = 1,i,-1 CO3-App (8) respectively onto w = i,0,-i
- 19. (a) (i) Using Cauchy's integral formula Evaluate $\int_{c}^{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$ (8)

where C is the circle |z|=3

(ii) Evaluate $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ in Laurent's series valid in the CO4-App (8)

region 1 < |z+1| < 3

Or

- (b) Using Contour integration Prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$ (16)
- 20. (a) (i) Solve: $Z = px + qy + \sqrt{1 + p^2 + q^2}$ CO5-App (8) (ii) Solve: x(y-z)p + y(z-x)q = z(x-y) CO5- App (8)
 - (b) A tightly String with fixed end points x=0 and x=l is initially at CO5-App rest in its equilibrium position. If its set vibrating giving each point at velocity $\lambda(lx-x^2)$. Determine the displacement function y(x,t).