Question Paper Code: 52002

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Civil Engineering

15UMA202- ENGINEERING MATHEMATICS-II

(Common to All branches)

(Regulation 2015)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1. How will You convert Cauchy's Homogeneous linear differential equation to a linear differential equation with constants Coefficients?

CO1-R

- (a) $z = \log x$
- (b) $x = \log z$
- (c) $z = e^x$
- (d) $z = \cos x$

2. How will You convert Legendre's linear differential equation to a linear differential equation with constants Coefficients?

CO1-R

CO2-R

CO2-R

- (a) $z = \log(ax + b)$
- (b) ax+b = log z
- (c) $z = e^{(ax+b)}$
- (d) z = cos(ax+b)

3. $\nabla(r^n) = ?$

(a) \vec{r} .

- (b) $r^{n-2}\vec{r}$.
- (c) $nr^{n-2}\vec{r}$.
- (d) nr^{n-2} .

4. $\operatorname{div}\left(\frac{\vec{r}}{r}\right) = ?$

2

 $(a)\frac{1}{r}$

(b) $\frac{2}{r}$

 $(c)\frac{r}{r}$

(d) $\frac{2}{r}r^n$

5. $u = 3x^2y - y^3$ is

CO3-R

- (a) non harmonic
- (b) harmonic
- (c) differentiable
- (d) non -differentiable
- 6. The image of the line x = 2 under the transformation $w = \frac{1}{z}$

CO3-R

(a)1/4

(b)1/2

- (c)1/9
- (d)1/16

7. Find Value of $\int_C \frac{z}{z-2} dz$, where C is the circle $|z-2| = \frac{3}{2}$

(a) 2πi

(b) 6πi

(c) $4\pi i$

(d) $7\pi i$

8. The Poles of $f(z) = \frac{4}{Z^3(z-2)}$

CO4-R

(a)1,2,0,3

(b) 2,0,0,0

(c)4,0,0,0

(d)3,0,0,0

9. The $L[e^{at}]$ is

CO5-R

(a)1/s-a

(b)s/s-a

(c)a/s-a

(d)1/s+a

10. The $L^{-1}[s/s^2+a^2]$ is

CO5-R

(a) cos hat

(b) sin hat

(c) sin at

(d) cos at

PART - B (5 x 2= 10Marks)

11. Transform $(x^2D^2 + x D + 1)$ y=0 into differential equation with constant CO1-R coefficients, where D= $\frac{d}{dx}$.

12. If $\vec{F} = x^3 \vec{i} + y^3 \vec{i} + z^3 \vec{k}$, find div (curl \vec{F}).

CO2-R

13. Show that the function $y + e^x \cos y$ is harmonic

CO3-R

14. Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is |Z| = 3/2.

CO4-R

15. Find the Laplace transform of $f(t)=cos^3 3t$

CO5-R

PART – C (5 x 16= 80Marks)

16. (a) Solve $(D^2 + a^2)$ y = tan x by the method of variation of CO1-App (16) parameters.

Or

(b) Solve
$$(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$$
 CO1-App (16)

17. (a) Verify Green's theorem in theorem in the plane for CO2-App (16) $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy \text{ where C is the boundary of the region defined by } x = y^2, y = x^2.$

Or

(b) Verify Stoke's theorem for the function $\vec{F} = x^2\vec{\imath} + xy\vec{\jmath}$ CO2-App (16) integrated round the square in the z = 0 plane whose sides are along the lines x = 0, y = 0, x = a, y = a.

18. (a) If f(z) = u + iv is an analytic function of z and CO3-Ana (16) $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$, find f(z) given that $f\left(\frac{\pi}{2}\right) = 0$.

Or

- (b) Find the bilinear transformation which maps the points -2,0,2 CO3 Ana into the points w = 0, i, -i respectively.
- 19. (a) Using Cauchy's integral formula, evaluate $\int_C \frac{1}{z^2-1} dz$ where C is CO4-Ana (16) the circle with centre at Z=0 and radius 2.

Or

- (b) Using contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x dx}{(x+1)(x^2+1)}$ CO4-Ana (16)
- 20. (a) Find the Laplace transform of CO5-App (16)
 - (i) $\sin 2t \sin 3t$
 - (ii) cos^23t
 - (iii) $sin^2 2t$

Or

(b) Solve by using laplace transform $(D^2 + 9) = \cos 2t$ given that CO5-App (16) $y(0) = 1, y(\frac{\pi}{2}) = -1.$