A		Reg. No. :													
	Question Paper Code: U4M21														
	B.E./B.Tech. DEGREE EXAMINATION. APRIL 2024														
Fourth Semester															
	Computer Science and Engineering														
21UMA421 - TRANSFORMS AND DISCRETE MATHEMATICS															
(Common to Information Technology & CSE(AIML))															
		(R	Regul	ation	s 202	21)									
Dur	ation: Three hours									М	axin	num:	100	Mar	ks
	Answer All Questions														
		PART A	A - (1	0 x 1	= 1	0 Ma	ırks)								
1.	1. The truth value of "10+3=7 or 5 is not prime", The truth value of "2+3=5 CO1-U and is a negative integer"								- U						
	(a) T, F	(b) F, T			(c)	F, F					(0	l) T,	Т		
2.	P: Rahim is Rich, Q: Rahim is happy. Then 'Rahim is poor but happy' Is CC best represented by?							CO1	- U						
	(a) $\neg P \lor \neg Q$	$(b) P \land \neg Q$			(c)	P∧Q					(0	l) <i>¬P</i>	∧ Q		
3.	If 'm' Pigeon occupies 'n'(m>n) holes then at least one hole has more than CO2 Pigeons							02	- U						
	(a) $\left[\frac{n-1}{m}\right]$	$(b)\left[\frac{m-1}{n}\right]$			(c)	$\frac{m}{n}$	$\left[\frac{1}{2}\right] + \frac{1}{2}$	l			(0	$\left(\frac{n}{2}\right)$	$\frac{-1}{m}$	+1	
4.	The numbers between 1 and 100, including both, are divisible by 2 or 6 is CO2- App							v pp							
_	(a) 50	(b) 16			(c)	66					(0	1) 34			
5.	A group (M,*) is said to be abelian if									CO3- U					
	(a) $(x+y)=(y+x)$ (b) $(x^*y)=(y^*x)$ (c) $(x+y)=x$								(0	(d) $(y^*x) = (x+y)$					
6.	The union of two subgroup of G is a									CO6- U					
	(a) Subgroup	(b) Semigroup)		(c)	grou	р				(0	l) M	onoio	1	
7.	Fourier transform of	$\int \sqrt{2\pi}$, $-1 < x < 1$											CC)4- A	vpp

	(a) -	$\frac{\cos s}{s}$	(b) $\sqrt{2\pi} \frac{\cos s}{s}$	(c) $\sqrt{2\pi} \frac{\sin s}{s}$		(d) $\frac{2\sin s}{s}$			
8.	A fi	unction is called s	self-reciprocal under	Fourier transform, if	n, if CO6- U				
	(a) It is reciprocal to itself (b) Its Fourier transform is th						ne same function		
	(c) Its Fourier transform is its reciprocal (d) None of the above				ove				
9.	The Z-transform of $\frac{a^n}{n!}$					CO)5 - U		
	(a) a	aZ	$(b)e^{\frac{Z}{a}}$	$(c)e^{Z}$	(d)	$e^{\frac{a}{Z}}$			
10.	The	Z transform of 4	$(-1)^n$ is			CO	06 - U		
	(a) -	$\frac{z}{z-1}$	$(b)\frac{z}{z+4}$	$(c)\frac{4z}{z-1}$		(d) $\frac{4z}{z+1}$			
	PART - B (5 x 2= 10 Marks)								
11.	Prove that $\neg P \rightarrow (P \rightarrow Q)$ is Tautology.						CO1 App		
12.	Derive the complementary function of $a_n - 2a_{n-1} + a_{n-2} = 2$						CO2-App		
13.	Define Monoid and give an example						CO3-U		
14.	Define Fourier transform pair						CO4-U		
15.	State Initial value and Final value theorem of Z transform						CO5-U		
	PART – C (5 x 16= 80 Marks)								
16.	(a)	(i) Calculate PC truth table.	CNF and PDNF for	$(P \land \neg Q) \lor (P \land R) \lor (Q \land$	^(R) using	CO1-App	(8)		
		(ii) Using the	rules of inferen	ce derive & using (CP Rule	CO1-App	(8)		
		$P \to (Q \to S), -$	$\neg R \lor P, Q \Rightarrow R \to S$						
	(b)	(i) Prove the foll	lowing by Indirect N	Aethod.		CO1-App	(8)		
	$P \to Q, Q \to R, \neg (P \land R), P \lor R \Rightarrow R$					- r r	(-)		
		(ii) Prove the fol	llowing by Indirect 1	method.		CO1-App	(8)		
		$(x)(P(x)\vee Q(x))$	$(x) P(x) \vee (\exists x) Q$	Q(x)					

17.	(a)	(i) Using mathematical induction prove that $(a^n - b^n)$ is divisible by	CO2- App	(8)
		(a-b).	CO2 Arm	(0)
		(ii) Solve: $a_{n+2} + 3a_{n+1} + 2a_n = 3^n$, $a_0 = 0$, $a_1 = 1$	СО2- Арр	(8)
	(h)	(i) Using generating functions Solve:	CO2- Ann	(8)
	(0)	(1) Using generating relations solve. $a_n - 7a_{n-1} + 10 a_{n-2} = 0, a_0 = 10, a_1 = 41$.	CO2- App	(0)
		(ii) Calculate the number of positive integers not exceeding 250	CO2- App	(8)
		that are divisible by 2, 3, 5 or by 7.		
18.	(a)	(i) State and prove Lagrange's theorem.	CO3- U	(10)
		(ii) Prove that $(a * b)^2 = a^2 * b^2$ iff (G,*) is abelian group	CO3- U	(6)
		Or		
	(b)	(i) The binary operation $*$ is defined on Q^+ such that	CO3- U	(8)
		$a * b = \frac{ab}{2}, a, b \in Q^+$, Show that $(Q^+, *)$ is an abelian Group.		
		(ii) Prove that Kerf is a normal subgroup.	CO3- U	(8)
10				
19.	(a)	Compute the Fourier Transform of	CO4- App	(16)
		$f(x) = \begin{cases} a - x & \text{if } x \le a \\ 0 & \text{if } x > a \end{cases} \text{ and hence evaluate}$		
		(i) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{4} dx$ (ii) $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx$		
		Or		
	(b)	Evaluate	CO4- App	(16)
		(i) $\int_{0}^{\infty} \frac{dx}{(x^{2}+16)(x^{2}+36)}$ (ii) $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+49)^{2}}$ using Fourier transform		
20.	(a)	(i) Solve the difference equation $x_1 = x_1 + 2x_2 + 2^n$ given that	CO5- App	(8)
		(1) Solve the unrefere equation $y_{n+2} + 4y_{n+1} + 5y_n = 5$ given that $y_0 = 0, y_1 = 1$		
			CO5 App	(8)
		(ii) Find the Z transform of $\left(\frac{1}{(n+1)(n+2)}\right)$	COJ- App	(8)
		Or		
	(b)	(i) Find the Z transform of $\sin n\theta$ and $\cos n\theta$.	CO5- App	(8)
		(ii) Using Convolution theorem find $z^{-1}\left[\frac{10z^2}{(5z-2)(2z+1)}\right]$.	CO5- App	(8)

U4M21