Reg. No.:					

Question Paper Code: 94829

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

Fourth Semester

Electronics and Communication Engineering

19UIT429- Introduction to Data Structures and Algorithms

(Regulations 2019)

Duration: Three hours Maximum: 100 Marks

Angwer All Questions

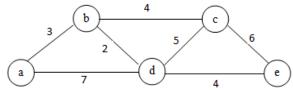
	Answer All Questions	
	PART A - $(10x 2 = 20 \text{ Marks})$	
1.	Compare linked list and linear array and contrast which one will you prefer to use and when? Justify your answer.	CO3- Ana
2.	Analyze which is more useful? By comparing the run time complexity of single linked list and double linked list. Justify your answer.	CO3- Ana
3.	What is the difference between Linear array and Linked List?	CO1- U
4.	What type of memory allocation is referred for Linked lists? Why?	CO1- U
5.	Define stack and list the application.	CO1- U
6.	What do you understand by stack overflow and underflow?	CO1- U
7.	Differentiate between a stack and queue.	CO1- U
8.	How does a stack implemented using linked lists differ from a stack implemented using an array?	CO1- U
9.	Draw the binary expression tree that represents the following postfix expression: A B + C * D $-$	CO2- App
10.	How is an AVL tree better than a binary search tree? Justify your answer.	CO3- Ana

PART - B (5 x 16= 80Marks)

Explain the different approaches to design an algorithm with neat CO1-U 11. (16)diagram.

Or

(b) Explain and diagrammatic illustrations how insertion and deletions CO1-U (16)can be performed on singly linked list.


12. (a) Write a C program to perform a push, pop and display operations on CO1-U stack ADT using array. (16)

Or

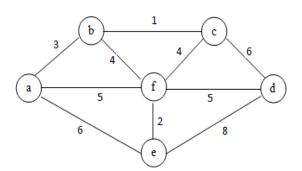
- (b) Develop an algorithm and diagrammatic illustrations the various CO1-U (16) operations that can be performed on a queue using array.
- 13. (a) Construct a Binary Search tree from the following set of elements CO2-App (16) 25, 14, 2, 45, 78, 1, 3, 4, 5, 20, 11, 56, 90, 85, 79, 65 and traverse the tree built in In-order, Postorder and Preorder.

Or

(b) Find a shortest path between any two vertices of a weighted graph or CO2-App (16) digraph and Estimate the efficiency of Dijkstra's Algorithm.

14. (a) Explain Binary Tree and Traversing a binary Tree with example. CO1- U (16)

Or


(b) Explain Binary Search Tree with example.

CO1- U (16)

15. (a) Write a C program to perform insert, delete and display operations CO2-App (16) on queues ADT using linked list.

Or

(b) Apply Kruskal's algorithm to find the minimum spanning tree for CO2-App (16) the following graph and write an algorithm of Kruskal's Algorithm.

