•				
Δ				
1	•			

Reg.	TAT.	
KAσ	INA	•
ILCZ.	1 1 U •	•

Question Paper Code: R2M03

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Computer Science and Engineering

R21UMA203- DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

(Regulations R2021)

		` •	,			
	(Common	to IT, Cyber Security	& IOT Engineering Br	ranches)		
Dura	ation: Three hours			Maximum: 100 Marks		
		Answer ALI	Questions			
		PART A - (10 x	1 = 10 Marks)			
1.	Particular Integral of		CO1- App			
	(a) $3x^3$	(b) $-3x^3$	(c) x^3	(d) $\frac{1}{x^3}$		
2.	Particular Integral of	$(D^2 + 5)y = \sin 2x$		CO1- App		
	$(a)\sin 2x$	(b) $-\sin 2x$	(c) $\cos 2x$	$(d) - \frac{x}{4} \cos 2x$		
3.	The critical point of the	ne transformation $w =$	$2z + \frac{1}{z}$ are	CO3- App		
	a) ±1	b) ±2	c) ± <i>i</i>	d) – <i>i</i>		
4.	The transformation w	=1/z is known as	<u></u>	CO3- U		
	(a) Rotation	b) reflection	c) translation	d) inversion		
5.	Greens theorem is a r	relation between	_	CO2- U		
	(a) two volume integr	als	(b) line integral and surface integral			
	(c) surface integral an	d volume integral	(d) volume integral and line integral			
6.	The real and imaginar	The real and imaginary parts of an analytic function are				
	(a) Harmonic		(b) orthogonal			

(d) All the above are true

(c) satisfies Laplace equation

7. $\int \frac{e^z}{z-2} dz$ where C is the unit circle with center as origin is _____ CO4- App (a) 0 (d) 1 (c) 2 (d) π 8. The poles of $f(z) = \frac{z^2 + 1}{1 + z^2}$ are CO6- U (a)1,0(b)0,0(c)1,2(d)-1,1The type of $3 \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial y} + 5 \frac{\partial^2 u}{\partial y^2} = x$ CO5- App (b) hyperbolic (a) parabolic (c) elliptic (d) cyclic 10. In a one dimensional wave equation, $c^2 = \underline{}$. CO5-U (a) T^2/m^2 (c) T/m^2 (d) T^2/m (b) T/m PART - B (5 x 2= 10 Marks) Compute the Particular Integral of $(D^3 - 3D)y = 4e^{-x}$ CO1 App Show that $\vec{F} = z\vec{i} + xj + y\vec{k}$ is Solenoidal 12. CO₂ App Prove that $u = e^x \cos y$ is harmonic function 13. CO₃ App Using Cauchy's integral formula, Evaluate $\int \frac{e^{-z}}{z+1} dz$ where C is |z| = 5 using CO₄ App Cauchy integral formula 15. Find the particular integral of $(D^2 + 3DD' + 5D'^2)Z = e^{x+2y}$ CO₅ App $PART - C (5 \times 16 = 80 Marks)$ 16. (a) (i) Solve CO1 App (8) $(D^2 + 3D + 2)y = e^{-2x} + \cos 2x$ (ii) Using method of variation of parameters solve CO1 App (8) $(D^2 + a^2)y = cosec ax$ Or (b) (i) Solve the differential equation $(x^2D^2 - 3xD - 5)y = x^2 \sin(\log x)$ CO1 App (8) (ii) Solve the differential equation CO₁ App (8) $[(x+1)^2 D^2 + (x+1)D + 4]y = \sin[\log(x+1)]$

17. (a) Verify Gauss divergence theorem for the vector function CO2 App (16) $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ over the cube bounded by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c

Or

- (b) Verify Stokes theorem for a vector field defined by CO2 App (16) $\vec{F} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ in the rectangular region in the XOY plane bounded by the lines $x = \pm a$, y = 0, and y = b.
- 18. (a) (i) Determine the analytic function whose real part is CO3 App (8) $(x-y)(x^2+4xy+y^2)$
 - (ii) Determine the bilinear transformation which maps $z = 0,1,\infty$ CO3 App (8) onto w = -5, -1, 3

Or

- (b) (i) If f(z)=u+iv is an analytic function then Prove that CO3 App (8) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f^1(z)|^2$
 - (ii) Determine the image of |z 3i| = 3 under the transformation CO3 App (8) $w = \frac{1}{z}$
- 19. (a) (i) Using Contour integration

CO4 App (8)

Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + 9)(x^2 + 25)}$

(ii) Cauchy's Residue theorem, Evaluate $\int_{c} \frac{2z+7}{(z-3)(z-1)(z+2)} dz$ where CO4 App (8)

C is the circle |z| = 4

Or

- (b) (i) Evaluate $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ in Laurent's series valid in the region 1 < |z+1| < 3
 - (ii) Using Contour integration, evaluate $\int_{0}^{2\pi} \frac{1}{13 5\cos\theta} d\theta$ CO4 App (8)

- 20. (a) A tightly String with fixed end points x=0 and x=t is initially at CO5 App (16) rest in its equilibrium position. If its set vibrating giving each point at velocity $\lambda(t x^2)$. Determine the displacement function y(x,t).
 - (b) (i) Solve: CO5 App (8) $(D^2 4DD' + 4D'^2)Z = e^{2x+y} + xy$
 - (ii) Solve: CO5 App (8) (3z 4y) p + (4x 5z) q = 5y 3x