4	_	٦
ı	l	

Reg. No.:						

Question Paper Code: R2I04

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

CSE (Internet of things)

	R2	21UIO204- DIGITA	L SYSTEM AND DESIGN		
		(Regula	ntions R2021)		
Dur	ation: Three hours		Ma	ximum: 100 Mark	S
		Answer	All Questions		
		PART A - (1	$0 \times 1 = 10 \text{ Marks}$		
1.	The 2's complement	of 17 is		CO2-A	Арр
	(a) 01110	(b) 01111	(c) 11110	(d) 10001	
2.	The minterm is also	known as		СО	1 - U
	(a) SOP		(b) POS		
	(c) Hybrid		(d)Both SOP and POS		
3.	The simplified expre	ession of full adder c	earry is	CO	1 - U
	(a) $c = xy + xz + yz$	(b) $c = xy + xz$	(c) $c = xy+xz+yz$	(d) c = xy + yz	
4.	Convert Gray code 1	110 to binary		CO2-A	App
	(a) 1011	(b) 1111	(c) 1011	(d) 1111	
5.	-		instant of time depends only outputs are called	СО	1 - U
	(a) Combinational ci	rcuits	(b) Sequential circuits		
	(c) Latches		(d) Flip-flops		
6.	In magnitude compa binary value will be	rator, If two number	rs are not equal then the	CO2-A	App
	(a) 0	(b) 1	(c) 2	(d) 3	
7.	The table that is not	a part of the asynchi	ronous analysis procedure is _	CO	1 - U
	(a) transition table		(b) state table		
	(c) low table		(d) Excitation table		

8.	Time delay device is the memory element	CO1-U		
	(a) Unclocked flip-flops	(b) clocked flip-flops		
	(c) synchronous circuits	(d) asynchronous circuits		
9.	Which of the following has the lowest acc	eess time?	CO1-U	
	(a) Registers (b) Main Memory	(c) ROM	(d) Both a and b	
10.	SPLDs, CPLDs, and FPGAs are all which	CO1-U		
	(a) PAL (b) PLD	(c) EPROM	(d) SRAM	
	PART – B (5	x 3= 15 Marks)		
11.	Convert the following Binary numbers int	to Decimal numbers:	CO2-App	
	(i) 110101 ₂			
	(ii) 1100.1011 ₂			
12.	Convert gray code 101011 into its binary	equivalent	CO2-App	
13.	Outline on shift register counters? List a counters.	any two widely used shift re	gister CO1-U	
14.	Compare synchronous and asynchronous	circuit?	CO1-U	
15.	Compare the features of PAL and PLA		CO1-U	
	PART – C	(5 x 15= 75 Marks)		
16.	(a) Apply theorems and properties expression	and simplify the Boolean	CO2-App (15)	
	(i) $\overline{AC} + ABC + A\overline{C}$	(5 Marks)		
	(ii) $A\overline{B} + ABD + AB\overline{D} + \overline{A}\overline{C}\overline{D} + AB\overline{D}$	ĀBĒ (5 Marks)		
	(iii) $BD + BC\overline{D} + A\overline{B}\overline{C}\overline{D}$	(5 Marks)		
	Or			
	(b) Simplify the following function Implement it using simple logic gate		CO2-App (15)	

 $F(A,B,C,D)=\sum m(1,4,6,7,8,9,10,11,15)$

17.	(a)	Design a carry look-ahead adder with necessary diagrams.	CO2-App	(15)
		Or		
	(b)	Design a logic circuit to convert the 8421 BCD to Excess-3 code	CO2-App	(15)
18.	(a)	Draw the excitation table, Logic diagram and K-map for the following flip-flop conversion:	CO2-App	(15)
		a. SR flip-flop to JK flip-flop		
		b. JK flip-flop to SR flip-flop		
		c. D flip-flop to JK flip-flop		
		Or		
	(b)	Design and explain about 1-Bit and 2-Bit Comparator.	CO2-App	(15)
19.	(a)	Develop Verilog program for full adder using structural model	CO2-App	(15)
		Or		
	(b)	An asynchronous sequential circuit is described by the following excitation and output function:	CO2-App	(15)
		$Y = X_1 X_2 + (X_1 + X_2) Y,$		
		Z = Y		
		(i) Draw the logic diagram of the circuit		
		(ii) Derive the transition table and output map		
		(iii)Describe the behaviour of the circuit		
20.	(a)	(a) Write short notes on EPROM and EEPROM. (8 Marks)	CO1-U	(15)
		(b) Give the classification of Semiconductor memories		
		(7Marks)		
		Or		
	(b)	Explain in detail about FPGA and also the types of FPGA.	CO1-U	(15)