D NI						
Reg. No. :						
1105.1						

Question Paper Code: UB401

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

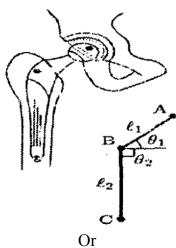
Professional Elective

Biomedical Engineering

21BMV401 BIOMECHANICS

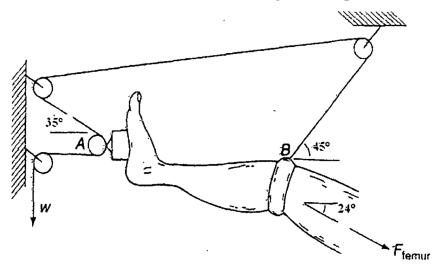
(Regulations 2021)

Duration: Three hours Maximum: 100 Marks


Answer All Questions

PART A - $(10x 2 = 20 \text{ Marks})$							
1.	Compare stress and strain.	CO1-U					
2.	Mention the parameters required to characterize the force.	CO1-U					
3.	How fluid mechanics is related to physiological system?	CO1-U					
4.	Mention the names of various prosthetic heart valves.	CO1-U					
5.	Draw the Voigt model of Viscoelasticity.	CO1-U					
6.	List the anisotropic characteristics of Bone tissue.	CO1-U					
7.	Differentiate movement and locomotion.	CO1-U					
8.	List the types of joint in skeletal system.	CO1-U					
9.	Outline the causes and effect of vibration.	CO1-U					
10.	List the most common ergonomic injuries in the workplace.	CO1-U					
	PART – B (5 x 16= 80 Marks)						
11.	(a) (i) Elaborate in brief about the resolution and composition of forces.	CO1-U	(10)				
	(ii) Discuss briefly about the Hookean Elastic solid.	CO1-U	(6)				
	Or						
	(b) (i) Summarize about the Newtonian viscous fluid with necessary equation.	CO1-U	(10)				
	(ii) Brief about the different forces that acts on the body.	CO1-U	(6)				

- 12. (a) (i) How the fluids are classified based on Newtonian concept? CO1-U (10) Derive the constitutive equation for blood.
 - (ii) Describe the material behavior of blood vessels. CO1-U (6)


Or

- (b) (i) Explain in brief the flow property of blood and its need in the CO1-U field of medicine. (10)
 - (ii) Explain the concepts of fluid mechanics in the straight tube. CO1-U (6)
- 13. (a) (i) With a neat diagram explain the mechanical property of CO1-U (10) Cartilage.
 - (ii) Derive the expression of constitutive equation for soft tissue. CO1-U (6)
 Or
 - (b) (i) Illustrate and explain the structure and functions of tendon and CO1-U (10) ligaments.
 - (ii) Explain in brief about the functional adaptation of bone. CO1-U (6)
- 14. (a) (i) What is lubrication? How are-they classified? Explain in detail CO1-U (8) the lubricating property of joints.
 - (ii) Consider the total hip joint prosthesis shown in Fig. The CO2-App geometric parameters of the prosthesis are such that ℓ_1 =52mm, ℓ_2 = 90mm θ_1 =30° and θ_2 = 90°. Assume that,when standing symmetrically on both feet, a joint reaction force of 450N is acting atthe femoral head due to the body weight of the patient. Consider 2 different lines of action for the applied force. Determine the moments generated about point B and C on the prosthesis device.

(8)

- (b) (i) Describe the function of various types of joints. CO1-U (8)
 - (ii) The Fig. shows a Russells traction rig used to apply an axial, CO2-App (8) tensile force to a fractured femur for immobilization.
 - A) What magnitude weight W must be suspended from the free end of the cable to maintain the leg in static equilibrium?
 - B) Compute the average tensile force applied to the thigh under these conditions. The weight of the person is 65Kg.

- 15. (a) (i) Explain the basic consideration to use the ergonomics in the CO1-U (8) work place.
 - (ii) Examine the process of designing a computer workstation that CO4-Ana (8) prevents musculoskeletal disorders.

Or

- (b) (i) Describe the role of Finite element modeling in biomechanics. CO1-U (8)
 - (ii) Analyze the effects of aging on the biomechanics of the lumbar CO4-Ana (8) spine using finite element analysis.