A
Δ
$\boldsymbol{\Gamma}$

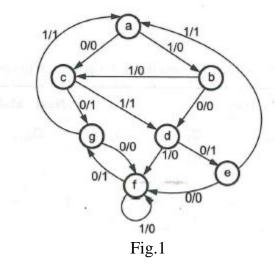
Reg. No.:

Question Paper Code: 53306

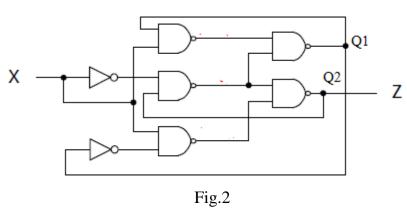
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024

Third Semester

Electrical and Electronics Engineering


15UEE306 -DIGITAL LOGIC CIRCUITS											
	(Regulation 2015)										
Dura	ntion: Three hours			aximum: 100 Marks							
	Answer ALL Questions										
	PART A - $(10 \times 1 = 10 \text{ Marks})$										
1.	Convert binary 11111	CO1- R									
	(a) EE2 ₁₆	(b) FF2 ₁₆	(c) 2FE ₁₆	(d) FD2 ₁₆							
2.	Any signed negative b	inary number is rec	ognized by its	CO1- R							
	(a) MSB	(b) LSB	(c) Byte	(d) Nibble							
3.	Canonical form is a ur	CO2- R									
	(a) SOP	(b) Minterm	(c) Boolean Expressions	(d) POS							
4.	The format used to present the logic output for the various combinations of logic inputs to a gate is called										
	(a) Truth table.		(b) Input logic function.								
	(c) Boolean constant		(d) Boolean variable								
5.	. What is a shift register that will accept a parallel input, or a bidirectional serial load and internal shift features, called?										
	(a) Tri state	(b) End around	(c) Universal	(d) Conversion							
6.	6. A basic S-R flip-flop can be constructed by cross-coupling of which basic logic gates?										
	(a) AND or OR (b) XOR or XNOR (c) NOR or NAND (d) AND or			(d) AND or NOR							

7.	. Table that is not a part of asynchronous analysis procedure is					CO4- R		
	(a) T	Transition table	(b) State table	(c) Flow table	(d) Excitation	on table		
8.	Hov	w much locations a	n 8-bit address code c	an select in memory?	CO4- R			
	(a) 8	3 locations	(b) 256 locations	(c) 65,536 locations	(d) 131,072	locations		
9.	Eacl	Each unit to be modeled in a VHDL design is known as						
	(a) I	Behavioral model		(b) Design architecture				
	(c) I	Design entity		(d) Structural model				
10.	the l	local component?	ng describes the conn	ections between the enti	ty port and	CO5-R		
	(a) Port map							
	(c) (One to one map		(d) Many to many map				
			PART - B (5 x)	2= 10 Marks)				
11.	Why Excess-3 code is called self complementing code? CO1- U							
12.	Draw the circuit diagram of full adder using two half adders. CO2- F							
13.	. Compare Moore and Melay circuits.					CO3- R		
14.	Define static hazard.					CO4- R		
15.	5. What are the various modeling techniques in VHDL?							
			PART – C (5	x 16= 80 Marks)				
16.	(a)	(i) Encode the b Hamming Code.	oinary word 1011 int	o seven bit even parity	CO1- U	(10)		
		(ii) Write short n	otes on binary weighte	ed code.	CO1- U	(6)		
			Or					
	(b)	(i) With a neat TTL NAND gate	-	e working of two input	CO1- U	(10)		
		(ii) Compare tote	em pole and open colle	ector outputs.	CO1- U	(6)		
17.	(a)	Design a 3:8 deand maxterm ger	nerator.	operation as a minterm	CO2- Ana	(16)		
			Or					
	(b)	Design a circuit equivalent gray of		r bit binary code into its	CO2- Ana	(16)		


18. (a) Design a MOD-7 synchronous counter using JK flip flop and CO3- Ana implement it. Also draw its timing diagram. (16)

Or

(b) Design a clocked sequential circuit for the state diagram CO3- Ana shown in Fig.1 using T flip flop. (16)

- 19. (a) (i) Analyze the following asynchronous network shown in Fig.2 using a flow table. Starting in the total stable state for which X = Z = 0.
 - (ii) Are there any races in the flow table?

Or

(b) Show how to programme the fusible links to get a 4 bit gray CO4-Ana code from the binary inputs using PLA and PAL and compare the design requirements with PROM.

CO4-Ana

(16)

20. (a) Write a VHDL program for full adder using structural CO5-U modeling and 1: 4 DMUX using data flow modeling. (16)

Or

- (b) (i) Explain the various operators supported by VHDL. CO5-U (8)
 - (ii) Write a VHDL code to realize a decade counter with CO5-U (8) behavioral modeling.