A		Reg. No. :							
Question Paper Code: 53303									
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2024									
Third Semester									
Electrical and Electronics Engineering									
15UEE303 - FIELD THEORY									
(Regulation 2015)									
Duration: Three hours Maximum: 100 Marks Answer ALL Questions									
PART A - (10 x 1 = 10 Marks)									
1.	The maximum space	rate of charge of that f	unction is		CO1- R				
	(a) Gradient	(d) Del operator							
2.	Under what condition	CO1- R							
	(a) A.B=0	(b) AxB=0	(c) Δ.A=0		(d) ΔxA=0				
3.	Relation between electric field intensity and electric flux density CO2- R								
	(a) ε/σ	(b) εσ	(c) E ε		(d) σ /ε				
4.	All the charges on a c	onducting body remai	ns on	_ of the body	CO2- R				
	(a) Inside	(b) Outside	(c) Surface		(d) All the above				
5.	Polarization is defined	d as			CO3- R				
	(a) Dipole moment / v	(b) Dipole moment / Area							
	(c) Volume/ dipole m	(d) Dipole n	1						
6.	Relation between B&			CO3- R					
	(a) B=µH	(b) H=µB	(c) B=µ/H	(d) N	lone of the above				
7.	The concept of dis attributed to	splacement current	was a major	contribution	CO4- R				
	(a) Faraday	(b) Lenz	(c) Maxwell		(d) Lorentz				

8.	Circ	cuit theory is			CO4- R				
0.		Three dimensional analysis	(b) Reference frequency		COTR				
		·							
		(c) Simple to understand (d) Voltage is not directly in							
9.	For	a uniform plane wave E and H is at	CO5-						
	(a) l	Parallel to each other	(b) Perpendicular to each othe						
	(c) l	Different frequency	(d) Different phase						
10.	The characteristic impedance of free space is given by Ohms CO5								
	(a) 3	377 (b) 375	(c) 376	(d) 378					
	PART – B (5 x 2= 10 Marks)								
11.	Give the physical significance of Divergence.				CO1 R				
12.	Recall the formula for finding force between two charges in vector form.				CO2 R				
13.	. State Gauss law for magnetic field.				CO3 R				
14.	. Compare Transformer and Motional EMF				CO4 A				
15.	-				CO5 R				
		PART - C (5)	x 16= 80Marks)						
16.	(a)	Explain in detail the basics of different derive its relevant equations	co-ordinate system and	CO1- App	(16)				
		Or							
	(b)	Verify the divergence theorem fo $A=xy^2 ax+y^3 ay+y^2z az$ and the surface $0 < x < 1, 0 < y < 1, 0 < z < 1.$	0	CO1- App	(16)				
17.	(a)	State and explain the boundary conditio Or	ns for electric field	CO2- App	(16)				
	(b)	(i) Derive poisson's and Laplace equation	ion?	CO2- App	(8)				
		(ii) Find the electric field field intensity infinite straight wire .	at a distance <i>x</i> above an	CO2- App	(8)				

18.	(a)	(i) State and Explain Biot savarts law.	CO3- App	(6)		
		(ii) Obtain the flux density and field intensity for circular coil.	CO3- App	(10)		
	Or					
	(b)	(i)Establish the relation of force between current carrying parallel	CO3 - App	(8)		
		conductors				
		(ii) Determine the force between two long parallel wires of 200m length separated by 5cm in air and carrying currents of 40A same direction and in opposite direction	CO3 - App	(8)		
19.	(a)	State and derive the Maxwell's equation in Integral form and point form for conducting medium	CO4- U	(16)		
	Or					
	(b)	(i) Develop the equation for conduction current density.	CO4- U	(8)		
		(ii) Compare Field Theory and Circuit Theory	CO4- U	(8)		
20.	(a)	Deduce the Wave equation for time varying fields in free space	CO5- App	(16)		
20.	(<i>a</i>)		CO2- Abb	(10)		
		Or				
	(b)	State poynting theorem. Derive the expression for it	CO5- App	(16)		