A		Reg. No. :													
		Question P	ape	er Co	ode	: U	430	2							
BE / B.Tech DEGREE EXAMINATION APRIL 2024															
Fourth Semester															
Electrical and Electronics Engineering															
21UEE402 – CONTROL SYSTEMS															
(Regulations 2021)															
Duration: Three hours Ma									Aaxi	aximum: 100 Marks					
Answer ALL Questions															
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$															
1.	If a signal is passed through an integrator, itthe amplitude of CO1-U noise signal.							91-U							
	(a)Enhances	(b) Reduces		(c	(c) Stabilizes					(d	(d) Factorizes				
2.	In a signal flow graph	In a signal flow graph, nodes are represented by small									CO1-U				
	(a) Circles	(b) Squares		(c) Ar	rows	5			(d) Poi	nters	5		
3.	(S+2)(S+1)/S2(S+3)(S	S+1)/S2(S+3)(S+4) is a							CO3-App						
	(a) Type- 0	(b) Type -1		(c) Ty	pe -2	2			(d) Typ	be –	3		
4.	The damping ratio of system is 0.5 and the natural frequency of CO3-App oscillation is 10rad/sec. Calculate the settling time for 2% error								Арр						
	(a) 0.4 sec	(b) 0.6 sec		(c) 0.7	rad	/sec			(d) 0.8	sec			
5.	Phase margin of a system is used to specify which of the following?						ng?		CO1-U						
	(a) Frequency response (b)			b) Absolute stability											
	(c) Relative stability			(d) Tir	ne r	espo	nse							
6.	The frequency at whitis called	he frequency at which the two asymptotic meet in a magnitude plot CO1-U called¬¬													
	(a) Resonant peak.			(b) Ba	nd v	vidth	1							
	(c) Corner frequency	c) Corner frequency (d) Resonant frequency													
7.	Which one of the following applications software's is used to obtain CO1-U an accurate root locus for?														
	(a) LISP	(b) MATLAB		(c) dB	ase				(d) Ora	cle			

8.	Technique is not applicable to nonlinear syst	em?	CO1-U						
	(a) Nyquist Criterion	(b) Quasi linearization							
	(c) Functional analysis	(d) Phase-plane representation							
9.	Which mechanism in control engineering measure the state by taking measurements at	g implies an ability to output?	CO1-U						
	(a) Controllability (b) Observability	(c) Adaptability (d) Dif	ferentiability						
10.	State space analysis is applicable to		CO1-U						
	(a) Linear system	(b) Nonlinear system							
	(c) MIMO	(d) All of these							
PART – B (5 x 2= 10 Marks)									
11.	Explain Mason's gain formula.								
12.	Compare steady state and transient response.								
13.	Explain the gain cross over frequency								
14.	Define the breakaway point and breaking point								
15.	Define Controllability.								

PART – C (5 x 16= 80 Marks)

16. (a) Write the differential equations governing the mechanical CO2-App (16) system shown in figure.1 and develop the transfer function

Or

(b) Using block diagram reduction techniques find closed loop CO2-App (16) transfer of the system whose block diagram shown in figure.

17. (a) For a unity feedback control system the open loop transfer CO3-App (16) function, $G(s) = \frac{10(s+2)}{s^2(s+1)}$ Find i) The position, velocity and acceleration error constants, ii) The steady state error when the input is R(s) where $R(s) = \frac{3}{2} - \frac{2}{s^2} + \frac{1}{3s^3}$ Or

- (b) A unity feedback control system is characterized by the CO3-App (16) following open loop transfer function G(s)=(0.4s+1)/s(s+0.6).Determine its transient response for unit step input and sketch the response .Evaluate the maximum overshoot and the corresponding peak time.
- 18. (a) Construct the Bode plot for the following transfer function and CO3-App (16) obtain the gain and phase cross over frequencies whose

G(s)=20/(s(1+3s)(1+4s))

Or

(b) Construct the Polar plot for the following transfer function and CO3-App (16) obtain the gain margin and phase margin whose

G(s)=1/(s(1+s)(1+2s))

19. (a) Construct Routh array and Examine the stability of the system CO3-App (16) whose characteristic equation is S6+2S5+8S⁴+12S³+20S²+16S+16=0. Also determine the number of roots lying on right half of S-plane, left half of s-plane and on imaginary axis.

Or

- (b) Sketch the Root locus of the system, whose open loop transfer CO3-App (16) function is G(s)=(K)/(S(S+2)(S+4))
- 20. (a) The state space representation of a system is given by CO3-App (16)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$Y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Develop the Transfer function.

Or

(b) i) Develop the state model of the system described by the CO3-App (16) following transfer function. $y(s)/u(s)=5/s^3+6s+7$

ii) Develop the state transition matrix for the state model whose system matrix A is given by

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$